Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2404384, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943469

RESUMO

Films and patterns of 3D-oriented metal-organic frameworks (MOFs) afford well-ordered pore structures extending across centimeter-scale areas. These macroscopic domains of aligned pores are pivotal to enhance diffusion along specific pathways and orient functional guests. The anisotropic properties emerging from this alignment are beneficial for applications in ion conductivity and photonics. However, the structure of 3D-oriented MOF films and patterns can rapidly degrade under humid and acidic conditions. Thus, more durable 3D-ordered porous systems are desired for practical applications. Here, oriented porous polymer films and patterns are prepared by using heteroepitaxially oriented N3-functionalized MOF films as precursor materials. The film fabrication protocol utilizes an azide-alkyne cycloaddition on the Cu2(AzBPDC)2DABCO MOF. The micropatterning protocol exploits the X-ray sensitivity of azide groups in Cu2(AzBPDC)2DABCO, enabling selective degradation in the irradiated areas. The masked regions of the MOF film retain their N3-functionality, allowing for subsequent cross-linking through azide-alkyne coupling. Subsequent acidic treatment removes the Cu ions from the MOF, yielding porous polymer micro-patterns. The polymer has high chemical stability and shows an anisotropic fluorescent response. The use of 3D-oriented MOF systems as precursors for the fabrication of oriented porous polymers will facilitate the progress of optical components for photonic applications.

2.
Adv Mater ; 36(1): e2309645, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38018327

RESUMO

The field of metal-organic frameworks (MOFs) has progressed beyond the design and exploration of powdery and single-crystalline materials. A current challenge is the fabrication of organized superstructures that can harness the directional properties of the individual constituent MOF crystals. To date, the progress in the fabrication methods of polycrystalline MOF superstructures has led to close-packed structures with defined crystalline orientation. By controlling the crystalline orientation, the MOF pore channels of the constituent crystals can be aligned along specific directions: these systems possess anisotropic properties including enhanced diffusion along specific directions, preferential orientation of guest species, and protection of functional guests. In this perspective, we discuss the current status of MOF research in the fabrication of oriented polycrystalline superstructures focusing on the specific crystalline directions of orientation. Three methods are examined in detail: the assembly from colloidal MOF solutions, the use of external fields for the alignment of MOF particles, and the heteroepitaxial ceramic-to-MOF growth. This perspective aims at promoting the progress of this field of research and inspiring the development of new protocols for the preparation of MOF systems with oriented pore channels, to enable advanced MOF-based devices with anisotropic properties.

3.
Chem Sci ; 14(43): 12056-12067, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37969597

RESUMO

3D-oriented metal-organic framework (MOF) films and patterns have recently emerged as promising platforms for sensing and photonic applications. These oriented polycrystalline materials are typically prepared by heteroepitaxial growth from aligned inorganic nanostructures and display anisotropic functional properties, such as guest molecule alignment and polarized fluorescence. However, to identify suitable conditions for the integration of these 3D-oriented MOF superstructures into functional devices, the effect of water (gaseous and liquid) on different frameworks should be determined. We note that the hydrolytic stability of these heteroepitaxially grown MOF films is currently unexplored. In this work, we present an in-depth analysis of the structural evolution of aligned 2D and 3D Cu-based MOFs grown from Cu(OH)2 coatings. Specifically, 3D-oriented Cu2L2 and Cu2L2DABCO films (L = 1,4-benzenedicarboxylate, BDC; biphenyl-4,4-dicarboxylate, BPDC; DABCO = 1,4-diazabicyclo[2.2.2]octane) were exposed to 50% relative humidity (RH), 80% RH and liquid water. The combined use of X-ray diffraction, infrared spectroscopy, and scanning electron microscopy shows that the sensitivity towards humid environments critically depends on the presence of the DABCO pillar ligand. While oriented films of 2D MOF layers stay intact upon exposure to all levels of humidity, hydrolysis of Cu2L2DABCO is observed. In addition, we report that in environments with high water content, 3D-oriented Cu2(BDC)2DABCO recrystallizes as 3D-oriented Cu2(BDC)2. The heteroepitaxial MOF-to-MOF transformation mechanism was studied with in situ synchrotron experiments, time-resolved AFM measurements, and electron diffraction. These findings provide valuable information on the stability of oriented MOF films for their application in functional devices and highlight the potential for the fabrication of 3D-oriented superstructures via MOF-to-MOF transformations.

4.
Inorg Chem ; 62(47): 19208-19217, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37963068

RESUMO

Nanoconfinement in metal-organic framework (MOF) pores can lead to the isolation of unusual or reactive metal complexes. However, MOFs that support the stabilization and precise structural elucidation of metal complexes and small metal clusters are rare. Here, we report a thermally and chemically stable zirconium-based MOF (University of Adelaide Material-1001, UAM-1001) with a high density of free bis-pyrazolyl units that can confine mono- and dinuclear metal complexes. The precursor MOF, UAM-1000, has a high degree of structural flexibility, but post synthetic modification with a bracing linker, biphenyl-4,4'-dicarboxylic acid, partially rigidifies the MOF (UAM-1001). This allows "matrix isolation" and detailed structural elucidation of postsynthetically added dimeric complexes bound within a tetradentate binding site formed by two linkers. Dimeric species [Co2Cl4], [Cu2Cl4], [Ni2Cl3(H2O)2]Cl, and [Rh2(CO)3Cl2] were successfully isolated in UAM-1001 and characterized by single-crystal X-ray diffraction. Comparison of the UAM-1001 isolated species with similar complexes in the solid state reveals that UAM-1001 can significantly distort the structures and enforce notably shorter metal-metal distances. For example, MOF tethering allows isolation of a [Cu2Cl4] complex that rapidly reacts with water in the solid state. The stability, porosity, and modulated flexibility of UAM-1001 provide an ideal platform material for the isolation and study of new dimeric complexes and their reactivity.

5.
J Am Chem Soc ; 145(37): 20365-20374, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37671920

RESUMO

This study reports the successful development of a sustainable synthesis protocol for a phase-pure metal azolate framework (MAF-6) and its application in enzyme immobilization. An esterase@MAF-6 biocomposite was synthesized, and its catalytic performance was compared with that of esterase@ZIF-8 and esterase@ZIF-90 in transesterification reactions. Esterase@MAF-6, with its large pore aperture, showed superior enzymatic performance compared to esterase@ZIF-8 and esterase@ZIF-90 in catalyzing transesterification reactions using both n-propanol and benzyl alcohol as reactants. The hydrophobic nature of the MAF-6 platform was shown to activate the immobilized esterase into its open-lid conformation, which exhibited a 1.5- and 4-times enzymatic activity as compared to free esterase in catalyzing transesterification reaction using n-propanol and benzyl alcohol, respectively. The present work offers insights into the potential of MAF-6 as a promising matrix for enzyme immobilization and highlights the need to explore MOF matrices with expanded pore apertures to broaden their practical applications in biocatalysis.


Assuntos
1-Propanol , Carboxilesterase , Esterases , Álcool Benzílico
6.
Chem Sci ; 14(35): 9409-9417, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37712014

RESUMO

Mn(diimine)(CO)3X (X = halide) complexes are critical components of chromophores, photo- and electrocatalysts, and photoactive CO-releasing molecules (photoCORMs). While these entities have been incorporated into metal-organic frameworks (MOFs), a detailed understanding of the photochemical and chemical processes that occur in a permanently porous support is lacking. Here we site-isolate and study the photochemistry of a Mn(diimine)(CO)3Br moiety anchored within a permanently porous MOF support, allowing for not only the photo-liberation of CO from the metal but also its escape from the MOF crystals. In addition, the high crystallinity and structural flexibility of the MOF allows crystallographic snapshots of the photolysis products to be obtained. We report these photo-crystallographic studies in the presence of coordinating solvents, THF and acetonitrile, showing the changing coordination environment of the Mn species as CO loss proceeds. Using time resolved experiments, we report complementary spectroscopic studies of the photolysis chemistry and characterize the final photolysis product as a possible Mn(ii) entity. These studies inform the chemistry that occurs in MOF-based photoCORMs and where these moieties are employed as catalysts.

7.
Adv Mater ; 35(25): e2211478, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934320

RESUMO

Micropatterning crystalline materials with oriented pores is necessary for the fabrication of devices with anisotropic properties. Crystalline and porous metal-organic frameworks (MOFs) are ideal materials as their chemical and structural mutability enables precise tuning of functional properties for applications ranging from microelectronics to photonics. Herein, a patternable oriented MOF film is designed: by using a photomask under X-ray exposure, the MOF film decomposes in the irradiated areas, remaining intact in the unexposed regions. The MOF film acts simultaneously as a resist and as functional porous material. While the heteroepitaxial growth from aligned Cu(OH)2 nanobelts is used to deposit oriented MOF films, the sensitivity to radiation is achieved by integrating a brominated dicarboxylate ligand (Br2 BDC) into a copper-based MOF Cu2 L2 DABCO (DABCO = 1,4-diazabicyclo[2.2.2]octane; L = BDC/Br2 BDC). The lithographed samples act as diffraction gratings upon irradiation with a laser, thus confirming the quality of the extended MOF micropattern. Furthermore, the oriented MOF patterns are functionalized with fluorescent dyes. As a result, by rotating the polarization angle of the laser excitation, the alignment of the dye in the MOF is demonstrated. By controlling the functional response to light, this MOF patterning protocol can be used for the microfabrication of optical components for photonic devices.

8.
Chem Commun (Camb) ; 59(27): 4059-4062, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36930163

RESUMO

Anionic hydrogen bonded frameworks were synthesised from di or tetra-amidinium hydrogen bond donor components and a charge "mis-matched" tecton possessing a 5- charge but only four hydrogen bond accepting groups. The net negative charge on the framework skeletons necessitates the presence of a cation in the framework channel. In one of the frameworks, the initially incorporated organic cation was rapidly displaced by smaller inorganic cations, or the cationic dye methylene blue. This facilitated the effective and selective removal of this dye from water.

9.
Chem Commun (Camb) ; 58(72): 10004-10007, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35942713

RESUMO

Metal-organic framework (MOF) coatings on cells enhance viability in cytotoxic environments. Here, we show how protective multi-layered MOF bio-composite shells on a model cell system (yeast) enhance the proliferation of living cells exposed to hostile protease-rich environments via the dissolution of the shells and release of a protease inhibitor (antitrypsin).


Assuntos
Antineoplásicos , Estruturas Metalorgânicas , Antineoplásicos/farmacologia , Sobrevivência Celular , Estruturas Metalorgânicas/farmacologia
10.
Chemistry ; 28(51): e202200958, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35863888

RESUMO

A new alkyne-based hydrocarbon cage was synthesized in high overall yield using alkyne-alkyne coupling in the cage forming step. The cage is porous and displays a moderately high BET surface area (546 m2 g-1 ). The cage loses crystallinity on activation and thus is porous in its amorphous form, while very similar cages have been either non-porous, or retained crystallinity on activation. Reaction of the cage with Co2 (CO)8 results in exhaustive metalation of its 12 alkyne groups to give the Co24 (CO)72 adduct of the cage in good yield.

11.
Chemistry ; 28(57): e202201929, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35768334

RESUMO

As hydrogen bonded frameworks are held together by relatively weak interactions, they often form several different frameworks under slightly different synthesis conditions and respond dynamically to stimuli such as heat and vacuum. However, these dynamic restructuring processes are often poorly understood. In this work, three isoreticular hydrogen bonded organic frameworks assembled through charge-assisted amidinium⋅⋅⋅carboxylate hydrogen bonds (1C/C , 1Si/C and 1Si/Si ) are studied. Three distinct phases for 1C/C and four for 1Si/C and 1Si/Si are fully structurally characterized. The transitions between these phases involve extreme yet recoverable molecular-level framework reorganization. It is demonstrated that these transformations are related to water content and can be controlled by humidity, and that the non-porous anhydrous phase of 1C/C shows reversible water sorption through single crystal to crystal restructuring. This mechanistic insight opens the way for the future use of the inherent dynamism present in hydrogen bonded frameworks.

12.
Adv Mater ; 34(27): e2201502, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35603497

RESUMO

Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called "BET surface identification" (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible.


Assuntos
Reprodutibilidade dos Testes , Adsorção , Porosidade
13.
Angew Chem Int Ed Engl ; 61(16): e202117345, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35038217

RESUMO

Enzymes incorporated into hydrogen-bonded organic frameworks (HOFs) via bottom-up synthesis are promising biocomposites for applications in catalysis and sensing. Here, we explored synthetic incorporation of d-amino acid oxidase (DAAO) with the metal-free tetraamidine/tetracarboxylate-based BioHOF-1 in water. N-terminal enzyme fusion with the positively charged module Zbasic2 strongly boosted the loading (2.5-fold; ≈500 mg enzyme gmaterial-1 ) and the specific activity (6.5-fold; 23 U mg-1 ). The DAAO@BioHOF-1 composites showed superior activity with respect to every reported carrier for the same enzyme and excellent stability during catalyst recycling. Further, extension to other enzymes, including cytochrome P450 BM3 (used in the production of high-value oxyfunctionalized compounds), points to the versatility of genetic engineering as a strategy for the preparation of biohybrid systems with unprecedented properties.


Assuntos
Sistema Enzimático do Citocromo P-450 , Enzimas Imobilizadas , Biocatálise , Sistema Enzimático do Citocromo P-450/metabolismo , Enzimas Imobilizadas/química , Engenharia Genética , Hidrogênio
14.
Adv Mater ; 34(21): e2106607, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34866253

RESUMO

Antibody (Ab)-targeted nanoparticles are becoming increasingly important for precision medicine. By controlling the Ab orientation, targeting properties can be enhanced; however, to afford such an ordered configuration, cumbersome chemical functionalization protocols are usually required. This aspect limits the progress of Abs-nanoparticles toward nanomedicine translation. Herein, a novel one-step synthesis of oriented monoclonal Ab-decorated metal-organic framework (MOF) nanocrystals is presented. The crystallization of a zinc-based MOF, Zn2 (mIM)2 (CO3 ), from a solution of Zn2+ and 2-methylimidazole (mIM), is triggered by the fragment crystallizable (Fc) region of the Ab. This selective growth yields biocomposites with oriented Abs on the MOF nanocrystals (MOF*Ab): the Fc regions are partially inserted within the MOF surface and the antibody-binding regions protrude from the MOF surface toward the target. This ordered configuration imparts antibody-antigen recognition properties to the biocomposite and shows preserved target binding when compared to the parental antibodies. Next, the biosensing performance of the system is tested by loading MOF*Ab with luminescent quantum dots (QD). The targeting efficiency of the QD-containing MOF*Ab is again, fully preserved. The present work represents a simple self-assembly approach for the fabrication of antibody-decorated MOF nanocrystals with broad potential for sensing, diagnostic imaging, and targeted drug delivery.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Pontos Quânticos , Anticorpos , Luminescência , Estruturas Metalorgânicas/química , Pontos Quânticos/química
15.
Chem Commun (Camb) ; 58(7): 957-960, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34951415

RESUMO

Metal-organic layers (MOLs) are of great interest in heterogeneous catalysis, particularly materials that can accommodate extraneous metal centres. Here, we demonstrate a two-step preorganisation/delamination synthetic strategy using CuI as a template to prepare Zr-based MOLs with accessible 'syn' bis-pyrazolyl chelating sites (named UAM-2·ns) that are poised for quantitative post-synthetic metalation with late transition metals.

16.
Chem Commun (Camb) ; 58(2): 306-309, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34889329

RESUMO

The effect of concentration, organic co-solvent, and salt modulators on the crystallisation of a hydrogen bonded framework was studied. The framework contains ∼1.4 nm wide channels and contains a diazobenzene based dicarboxylate anion. Light-induced cis/trans switching of this anion was also used to control crystallisation.

17.
Chem Sci ; 12(44): 14893-14900, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34820105

RESUMO

Stimuli-responsive metal-organic frameworks (MOFs) exhibit dynamic, and typically reversible, structural changes upon exposure to external stimuli. This process often induces drastic changes in their adsorption properties. Herein, we present a stimuli-responsive MOF, 1·[CuCl], that shows temperature dependent switching from a rigid to flexible phase. This conversion is associated with a dramatic reversible change in the gas adsorption properties, from Type-I to S-shaped isotherms. The structural transition is facilitated by a novel mechanism that involves both a change in coordination number (3 to 2) and geometry (trigonal planar to linear) of the post-synthetically added Cu(i) ion. This process serves to 'unlock' the framework rigidity imposed by metal chelation of the bis-pyrazolyl groups and realises the intrinsic flexibility of the organic link.

18.
Faraday Discuss ; 231(0): 66-80, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34227643

RESUMO

Three-dimensional electron diffraction (3DED) has been proven as an effective and accurate method for structure determination of nano-sized crystals. In the past decade, the crystal structures of various new complex metal-organic frameworks (MOFs) have been revealed by 3DED, which has been the key to understand their properties. However, due to the design of transmission electron microscopes (TEMs), one drawback of 3DED experiments is the limited tilt range of goniometers, which often leads to incomplete 3DED data, particularly when the crystal symmetry is low. This drawback can be overcome by high throughput data collection using continuous rotation electron diffraction (cRED), where data from a large number of crystals can be collected and merged. Here, we investigate the effects of improving completeness on structural analysis of MOFs. We use ZIF-EC1, a zeolitic imidazolate framework (ZIF), as an example. ZIF-EC1 crystallizes in a monoclinic system with a plate-like morphology. cRED data of ZIF-EC1 with different completeness and resolution were analyzed. The data completeness increased to 92.0% by merging ten datasets. Although the structures could be solved from individual datasets with a completeness as low as 44.5% and refined to a high precision (better than 0.04 Å), we demonstrate that a high data completeness could improve the structural model, especially on the electrostatic potential map. We further discuss the strategy adopted during data merging. We also show that ZIF-EC1 doped with cobalt can act as an efficient electrocatalyst for oxygen reduction reactions.

19.
Inorg Chem ; 60(16): 11775-11783, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34160208

RESUMO

Transition-metal complexes bearing labile ligands can be difficult to isolate and study in solution because of unwanted dinucleation or ligand substitution reactions. Metal-organic frameworks (MOFs) provide a unique matrix that allows site isolation and stabilization of well-defined transition-metal complexes that may be of importance as moieties for gas adsorption or catalysis. Herein we report the development of an in situ anion metathesis strategy that facilitates the postsynthetic modification of Cu(I) complexes appended to a porous, crystalline MOF. By exchange of coordinated chloride for weakly coordinating anions in the presence of carbon monoxide (CO) or ethylene, a series of labile MOF-appended Cu(I) complexes featuring CO or ethylene ligands are prepared and structurally characterized using X-ray crystallography. These complexes have an uncommon trigonal planar geometry because of the absence of coordinating solvents. The porous host framework allows small and moderately sized molecules to access the isolated Cu(I) sites and displace the "place-holder" CO ligand, mirroring the ligand-exchange processes involved in Cu-centered catalysis.

20.
ACS Appl Mater Interfaces ; 13(44): 51867-51875, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33957755

RESUMO

The biomimetic mineralization of zeolitic imidazolate framework-8 (ZIF-8) has been reported as a strategy for enzyme immobilization, enabling the heterogenization and protection of biomacromolecules. Here, we report the preparation of different Candida antarctica lipase B biocomposites (CALB@ZIF-8) formed by altering the concentrations of Zn2+ and 2-methylimidazole (2-mIM). The influence of synthetic conditions on the catalytic activity of the lipase CALB was examined by hydrolysis and transesterification assays in aqueous and organic media, respectively. We demonstrated that for both reactions, activity was retained for the biocomposites formed at low Zn2+/2-mIM ratios but notably almost entirely lost when the ligand concentration used to form the biocomposites was increased. Additionally, phosphate buffer could regenerate the activity of larger particles by degrading the crystal surfaces and releasing encapsulated CALB into solution. Transesterification reactions using CALB@ZIF-8 biocomposites were undertaken in 100% hexane, giving rise to enhanced CALB activity relative to the free enzyme. These observations highlight the fundamental importance of synthetic protocols and operating parameters for developing enzyme@MOF biocomposites with improved activity in challenging conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...