Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35590937

RESUMO

Data-driven methods have prominently featured in the progressive research and development of modern condition monitoring systems for electrical machines. These methods have the advantage of simplicity when it comes to the implementation of effective fault detection and diagnostic systems. Despite their many advantages, the practical implementation of data-driven approaches still faces challenges such as data imbalance. The lack of sufficient and reliable labeled fault data from machines in the field often poses a challenge in developing accurate supervised learning-based condition monitoring systems. This research investigates the use of a Naïve Bayes classifier, support vector machine, and k-nearest neighbors together with synthetic minority oversampling technique, Tomek link, and the combination of these two resampling techniques for fault classification with simulation and experimental imbalanced data. A comparative analysis of these techniques is conducted for different imbalanced data cases to determine the suitability thereof for condition monitoring on a wound-rotor induction generator. The precision, recall, and f1-score matrices are applied for performance evaluation. The results indicate that the technique combining the synthetic minority oversampling technique with the Tomek link provides the best performance across all tested classifiers. The k-nearest neighbors, together with this combination resampling technique yielded the most accurate classification results. This research is of interest to researchers and practitioners working in the area of condition monitoring in electrical machines, and the findings and presented approach of the comparative analysis will assist with the selection of the most suitable technique for handling imbalanced fault data. This is especially important in the practice of condition monitoring on electrical rotating machines, where fault data are very limited.


Assuntos
Máquina de Vetores de Suporte , Teorema de Bayes , Análise por Conglomerados , Simulação por Computador
2.
Sci Rep ; 11(1): 20626, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663842

RESUMO

Bioprocess development for umqombothi (a South African traditional beer) as with other traditional beer products can be complex. As a result, beverage bioprocess development is shifting towards new systematic protocols of experimentation. Traditional optimization methods such as response surface methodology (RSM) require further comparison with a relevant machine learning system. Artificial neural network (ANN) is an effective non-linear multivariate tool in bioprocessing, with enormous generalization, prediction, and validation capabilities. ANN bioprocess development and optimization of umqombothi were done using RSM and ANN. The optimum condition values were 1.1 h, 29.3 °C, and 25.9 h for cooking time, fermentation temperature, and fermentation time, respectively. RSM was an effective tool for the optimization of umqombothi's bioprocessing parameters shown by the coefficient of determination (R2) closer to 1. RSM significant parameters: alcohol content, total soluble solids (TSS), and pH had R2 values of 0.94, 0.93, and 0.99 respectively while the constructed ANN significant parameters: alcohol content, TSS, and viscosity had R2 values of 0.96, 0.96, and 0.92 respectively. The correlation between experimental and predicted values suggested that both RSM and ANN were suitable bioprocess development and optimization tools.

3.
JMIR Med Inform ; 9(3): e22916, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33667172

RESUMO

BACKGROUND: The global onset of COVID-19 has resulted in substantial public health and socioeconomic impacts. An immediate medical breakthrough is needed. However, parallel to the emergence of the COVID-19 pandemic is the proliferation of information regarding the pandemic, which, if uncontrolled, cannot only mislead the public but also hinder the concerted efforts of relevant stakeholders in mitigating the effect of this pandemic. It is known that media communications can affect public perception and attitude toward medical treatment, vaccination, or subject matter, particularly when the population has limited knowledge on the subject. OBJECTIVE: This study attempts to systematically scrutinize media communications (Google News headlines or snippets and Twitter posts) to understand the prevailing sentiments regarding COVID-19 vaccines in Africa. METHODS: A total of 637 Twitter posts and 569 Google News headlines or descriptions, retrieved between February 2 and May 5, 2020, were analyzed using three standard computational linguistics models (ie, TextBlob, Valence Aware Dictionary and Sentiment Reasoner, and Word2Vec combined with a bidirectional long short-term memory neural network). RESULTS: Our findings revealed that, contrary to general perceptions, Google News headlines or snippets and Twitter posts within the stated period were generally passive or positive toward COVID-19 vaccines in Africa. It was possible to understand these patterns in light of increasingly sustained efforts by various media and health actors in ensuring the availability of factual information about the pandemic. CONCLUSIONS: This type of analysis could contribute to understanding predominant polarities and associated potential attitudinal inclinations. Such knowledge could be critical in informing relevant public health and media engagement policies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...