Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 18762, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33128012

RESUMO

The function of pocket shark pectoral pockets has puzzled scientists over decades. Here, we show that the pockets of the American Pocket Shark (Mollisquama mississippiensis) contain a brightly fluorescent stratified cubic epithelium enclosed in a pigmented sheath and in close contact with the basal cartilage of the pectoral fins; cells of this epithelium display a centripetal gradient in size and a centrifuge gradient in fluorescence. These results strongly support the idea that pocket shark's pockets are exocrine holocrine glands capable of discharging a bioluminescent fluid, potentially upon a given movement of the pectoral fin. Such capability has been reported in many other marine organisms and is typically used as a close-range defensive trick. In situ observations would be required to confirm this hypothesis.


Assuntos
Nadadeiras de Animais/metabolismo , Tubarões/metabolismo , Nadadeiras de Animais/fisiologia , Animais , Medições Luminescentes , Tubarões/fisiologia , Natação/fisiologia
2.
Zootaxa ; 4619(1): zootaxa.4619.1.4, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31716316

RESUMO

A new species of kitefin shark (Squaliformes; Dalatiidae) is described from the Gulf of Mexico (Western North Atlantic Ocean) based on five diagnostic features not seen on the only other known Mollisquama specimen, the holotype of Mollisquama parini Dolganov which was captured in the Eastern South Pacific Ocean. The new species, Mollisquama mississippiensis sp. nov., is distinguished from its congener by a putative pit organ located ventrally just posterior of the lower jaw margin center, photophores irregularly distributed along many areas of the body, 16 distinct ventral-abdominal photophore aggregations, and two differences associated with the dentition. Other potential distinguishing features are 10 fewer vertebrae than Mollisquama parini and six morphometric proportional differences that exceeded +/- 20% from the holotype.


Assuntos
Tubarões , Animais , Oceano Atlântico , Dentição , Golfo do México , Oceano Pacífico
3.
J Anat ; 233(1): 15-32, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29761472

RESUMO

Dalatiid sharks are members of a family of predominantly small, midwater meso- and bathypelagic chondrichthyans. The family is notable for both its number of monotypic genera and high morphological disparity. Three of the seven dalatiid genera are known only from holotype specimens (Mollisquama parini) or from only a handful of specimens (Euprotomicroides zantedeschia, Heteroscymnoides marleyi), with the only detailed anatomical work consistent across all taxa being studies of dentition. Here, we present detailed anatomical description of the second-ever specimen of Mollisquama (Mollisquama sp.) covering chondrocranial, jaw, dental, and muscular anatomy, derived from a phase-contrast synchrotron microtomographic scan. Mollisquama sp. is unique among dalatiids in possessing a deep carinal process, extending ventrally from the bar between the subethmoid region and basal angle in squaloid sharks, containing a large fenestra infiltrated by the suborbitalis muscle. Mollisquama sp. also exhibits additional possibly diagnostic features, including a planar configuration of the labial cartilages and the absence of labial folds; a pad-like orbital process on the palatoquadrate; and the origination of the suborbitalis muscle solely on the carina, rather than the intraorbital wall. Character optimization of anatomical data onto a phylogeny of dalatiid sharks suggests Mollisquama sp. to be among the most specialized in the family, expanding the existing dalatiid morphospace. However, the functional significance of such transformations remains unclear. Synchrotron-derived data, which do not require chemical pretreatment of specimens, may elucidate soft-tissue functional correlates in future studies of undersampled taxa, such as dalatiids.


Assuntos
Evolução Biológica , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Animais , Músculos Faciais/anatomia & histologia , Músculos Faciais/diagnóstico por imagem , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/diagnóstico por imagem , Filogenia , Tubarões , Dente/anatomia & histologia , Dente/diagnóstico por imagem , Microtomografia por Raio-X/métodos
4.
Zootaxa ; 3948(3): 587-600, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25947789

RESUMO

The description of the pocket shark genus Mollisquama (M. parini Dolganov, 1984) is based on a single known specimen collected from the Nazca Ridge of the southeast Pacific Ocean. A second Mollisquama specimen has been captured in the central Gulf of Mexico establishing a considerable range extension and a parturition locality because the specimen has a healed vitelline scar. Both the holotype of M. parini and the Gulf of Mexico specimen possess the remarkable pocket gland with its large slit-like external opening located just above the pectoral fin. Features found on the Gulf of Mexico specimen that were not noted in the description of M. parini include a series of ventral abdominal photophore agglomerations and a modified dermal denticle surrounded by a radiating arrangement of denticles just posterior to the mouth. Based on a morphometric and meristic comparison of the Gulf of Mexico specimen with information in the description of M. parini, the Gulf of Mexico specimen is identified as Mollisquama sp. due to differences in tooth morphology and vertebral counts. Phylogenetic analysis of NADH2 gene sequences places Mollisquama sister to Dalatias plus Isistius within the family Dalatiidae.


Assuntos
Tubarões/anatomia & histologia , Tubarões/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Ecossistema , Feminino , Golfo do México , Masculino , México , Tamanho do Órgão , Oceano Pacífico , Filogenia , Tubarões/genética , Tubarões/crescimento & desenvolvimento
5.
Copeia ; 103(4): 740-750, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28250540

RESUMO

The structure of the caudal skeleton of extant teleost fishes has been interpreted in two different ways. In a diural interpretation, a caudal skeleton is composed of two centra articulated with one to six hypurals. Most subsequent authors have followed this interpretation. In contrast, a polyural interpretation considers the teleost fin to be derived from a fully metameristic ancestral bauplan originally composed of a one-to-one relationship between neural arches, centra (when present), and hypurals. Three different interpretations of the identity and homology of skeletal components of the caudal skeleton of the teleost fish Danio rerio have been proposed, two from a diural perspective and one from a polyural perspective. We examine each caudal skeletal component of Danio rerio from both a developmental and phylogenetic perspective. We propose that a polyural interpretation of structures is consistent with the current interpretation of the basal neopterygian caudal fin for this model organism rather than the older diural interpretation that does not take into account the metamerism observed in caudal structures during development. The polyural interpretation suggests several shared evolutionary innovations of major clades that would remain undiscovered under the older diural naming paradigm and makes the terminology of the parts of the caudal fin of Danio rerio strictly comparable to more basal fishes.

6.
J Morphol ; 272(9): 1092-108, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21598291

RESUMO

We studied the morphology and shape variation of the palatal organ and chewing pad of sucker fishes, family Catostomidae. The palatal organ is a muscularized structure that forms a large mass on the roof of the posterior part of the buccopharyngeal cavity in cypriniform fishes. It functions in coordination with the branchial arches to separate food items from inorganic debris during feeding. The palatal organ exhibits considerable variability in morphology among catostomids. It is shorter, narrower, and thinner in species of the subfamily Cycleptinae (e.g., Cycleptus elongatus) than in other catostomid subfamilies. The thickest and widest palatal organ is seen in species of the subfamily Ictiobinae (e.g., Ictiobus cyprinellus). The shape and size of the palatal organ generally varies between these extremes in species of subfamily Catostominae (e.g., Catostomus and Moxostoma species). Principal components analysis and analysis of variance has differentiated means of various palatal organ measurements for each monophyletic subfamily and tribe of Catostomidae with statistical significance. These results corroborate previously established typological classification of catostomids based on pharyngeal tooth count, pharyngeal tooth morphology, and diet. A keratinized chewing pad forms on the posterior surface of the palatal organ in catostomids or on a skeletal process in cyprinids and serves as an occlusion surface for pharyngeal teeth. The chewing pad is lunate in catostomids and generally ovoid in cyprinids. It is absent from the species of loaches (e.g., botiids, cobitids, and nemacheilids) and gyrinocheilids examined. A synonymy of terms used in the past to describe the palatal organ and chewing pad of Cypriniformes is provided.


Assuntos
Cipriniformes/anatomia & histologia , Animais , Cipriniformes/classificação , Cipriniformes/fisiologia , Mastigação , Faringe/anatomia & histologia
7.
Int J Mol Sci ; 11(3): 1090-102, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20480002

RESUMO

Catostomid fishes (suckers) have duplicate copies of the growth hormone gene and other nuclear genes, due to a genome duplication event early in the group's history. Yet, paralogs of GH in suckers are more than 90% conserved in nucleotide (nt) and amino acid (aa) sequence. Within paralogs across species, variation in nt and aa sequence averages 3.33% and 4.46% for GHI, and 3.22% and 2.43% for GHII, respectively. Selection tests suggest that the two GH paralogs are under strong purifying selection. Consensus trees from phylogenetic analysis of GH coding region data for 23 species of suckers, other cypriniform fishes and outgroups resolved cypriniform relationships and relationships among GHI sequences of suckers more or less consistently with analyses based on other molecular data. However, the analysis failed to resolve all sucker GHI and GHII sequences as monophyletic sister groups. This unexpected topology did not differ significantly from topologies constrained to make all GH sequences monophyletic. We attribute this result either to limitations in our GHII data set or convergent adaptive changes in GHII of tribe Catostomini.


Assuntos
Cipriniformes/genética , Evolução Molecular , Proteínas de Peixes/genética , Duplicação Gênica , Hormônio do Crescimento/genética , Animais , Cipriniformes/classificação , Filogenia
8.
Mol Phylogenet Evol ; 54(3): 1028-34, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19527790

RESUMO

Family Catostomidae is a diverse group of benthic freshwater fishes that are distributed across North America and in parts of East Asia. In this study, the phylogenetic relationships of Catostomidae is examined using 3436 nucleotides of mitochondrial ND4 and ND5 protein coding genes and intervening tRNAs. All 13 genera and 60 species of catostomids were sampled to represent diversity of the family. Catostomidae and its four subfamilies were found to be monophyletic; however, relationships of the subfamilies are not strongly supported with bootstrapping. The analysis provides strong support for recognizing four tribes in subfamily Catostominae.


Assuntos
Cipriniformes/genética , Evolução Molecular , Genes Mitocondriais , Filogenia , Animais , Cipriniformes/classificação , DNA Mitocondrial/genética , Funções Verossimilhança , Alinhamento de Sequência , Análise de Sequência de DNA
9.
Mol Phylogenet Evol ; 51(3): 500-14, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19141325

RESUMO

The order Cypriniformes is the most diverse clade of freshwater fishes and is natively distributed on all continents except South America, Australia, and Antarctica. Despite the diversity of the group and the fundamental importance of these species in both ecosystems and human culture, relatively little has been known about their relationships relative to their diversity. In recent years, with an international effort investigating the systematics of the group, more information as to their genealogical relationships has emerged and species discovery and their descriptions have increased. One of the more interesting aspects of this group has been a traditional lack of understanding of the relationships of the families, subfamilies, and other formally or informally identified groups. Historical studies have largely focused on smaller groups of species or genera. Because of the diversity of this group and previously published whole mitochondrial genome evidence for relationships of major clades in the order, this clade serves as an excellent group to investigate the congruence between relationships reconstructed for major clades with whole mitogenome data and those inferred from a series of nuclear gene sequences. As descent has resulted in only one tree of life, do the phylogenetic relationships of these major clades converge on similar topologies using the large number of available characters through this suite of nuclear genes and previously published mitochondrial genomes? In this study we examine the phylogenetic relationships of major clades of Cypriniformes using previously published mitogenomes and four putative single-copy nuclear genes of the same or closely related species. Combined nuclear gene sequences yielded 3810bp, approximately 26% of the bp found in a single mitogenome; however homoplasy in the nuclear genes was measurably less than that observed in mitochondrial sequences. Relationships of taxa and major clades derived from analyses of nuclear and mitochondrial sequences were nearly identical and both received high support values. While some differences of individual gene trees did exist for species, it is predicted that these differences will be minimized with increased taxon sampling in future analyses.


Assuntos
Cipriniformes/genética , Evolução Molecular , Filogenia , Animais , Teorema de Bayes , Núcleo Celular/genética , Cipriniformes/classificação , DNA Mitocondrial/genética , Genoma Mitocondrial , Funções Verossimilhança , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...