Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Methods Biomech Biomed Engin ; 20(5): 492-507, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27796137

RESUMO

The image-based computational fluid dynamics (IB-CFD) technique, as the combination of medical images and the CFD method, is utilized in this research to analyze the left ventricle (LV) hemodynamics. The research primarily aims to propose a semi-automated technique utilizing some freely available and commercial software packages in order to simulate the LV hemodynamics using the IB-CFD technique. In this research, moreover, two different physiological time-resolved 2D models of a patient-specific LV with two different types of aortic and mitral valves, including the orifice-type valves and integrated with rigid leaflets, are adopted to visualize the process of developing intraventricular vortex formation and propagation. The blood flow pattern over the whole cardiac cycle of two models is also compared to investigate the effect of utilizing different valve types in the process of the intraventricular vortex formation. Numerical findings indicate that the model with integrated valves can predict more complex intraventricular flow that can match better the physiological flow pattern in comparison to the orifice-type model.


Assuntos
Simulação por Computador , Hemodinâmica/fisiologia , Hidrodinâmica , Processamento de Imagem Assistida por Computador , Função Ventricular/fisiologia , Valva Aórtica/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Humanos , Valva Mitral/fisiologia , Modelos Cardiovasculares , Análise Numérica Assistida por Computador
2.
Biomed Eng Online ; 15(1): 101, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27562639

RESUMO

Cardiovascular disease (CVD), the leading cause of death today, incorporates a wide range of cardiovascular system malfunctions that affect heart functionality. It is believed that the hemodynamic loads exerted on the cardiovascular system, the left ventricle (LV) in particular, are the leading cause of CVD initiation and propagation. Moreover, it is believed that the diagnosis and prognosis of CVD at an early stage could reduce its high mortality and morbidity rate. Therefore, a set of robust clinical cardiovascular assessment tools has been introduced to compute the cardiovascular hemodynamics in order to provide useful insights to physicians to recognize indicators leading to CVD and also to aid the diagnosis of CVD. Recently, a combination of computational fluid dynamics (CFD) and different medical imaging tools, image-based CFD (IB-CFD), has been widely employed for cardiovascular functional assessment by providing reliable hemodynamic parameters. Even though the capability of CFD to provide reliable flow dynamics in general fluid mechanics problems has been widely demonstrated for many years, up to now, the clinical implications of the IB-CFD patient-specific LVs have not been applicable due to its limitations and complications. In this paper, we review investigations conducted to numerically simulate patient-specific human LV over the past 15 years using IB-CFD methods. Firstly, we divide different studies according to the different LV types (physiological and different pathological conditions) that have been chosen to reconstruct the geometry, and then discuss their contributions, methodologies, limitations, and findings. In this regard, we have studied CFD simulations of intraventricular flows and related cardiology insights, for (i) Physiological patient-specific LV models, (ii) Pathological heart patient-specific models, including myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy and hypoplastic left heart syndrome. Finally, we discuss the current stage of the IB-CFD LV simulations in order to mimic realistic hemodynamics of patient-specific LVs. We can conclude that heart flow simulation is on the right track for developing into a useful clinical tool for heart function assessment, by (i) incorporating most of heart structures' (such as heart valves) operations, and (ii) providing useful diagnostic indices based hemodynamic parameters, for routine adoption in clinical usage.


Assuntos
Circulação Coronária , Modelos Cardiovasculares , Cardiopatias/fisiopatologia , Humanos , Hidrodinâmica , Modelagem Computacional Específica para o Paciente
3.
Comput Methods Programs Biomed ; 127: 232-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26849955

RESUMO

Recently, various non-invasive tools such as the magnetic resonance image (MRI), ultrasound imaging (USI), computed tomography (CT), and the computational fluid dynamics (CFD) have been widely utilized to enhance our current understanding of the physiological parameters that affect the initiation and the progression of the cardiovascular diseases (CVDs) associated with heart failure (HF). In particular, the hemodynamics of left ventricle (LV) has attracted the attention of the researchers due to its significant role in the heart functionality. In this study, CFD owing its capability of predicting detailed flow field was adopted to model the blood flow in images-based patient-specific LV over cardiac cycle. In most published studies, the blood is modeled as Newtonian that is not entirely accurate as the blood viscosity varies with the shear rate in non-linear manner. In this paper, we studied the effect of Newtonian assumption on the degree of accuracy of intraventricular hemodynamics. In doing so, various non-Newtonian models and Newtonian model are used in the analysis of the intraventricular flow and the viscosity of the blood. Initially, we used the cardiac MRI images to reconstruct the time-resolved geometry of the patient-specific LV. After the unstructured mesh generation, the simulations were conducted in the CFD commercial solver FLUENT to analyze the intraventricular hemodynamic parameters. The findings indicate that the Newtonian assumption cannot adequately simulate the flow dynamic within the LV over the cardiac cycle, which can be attributed to the pulsatile and recirculation nature of the flow and the low blood shear rate.


Assuntos
Circulação Coronária , Ventrículos do Coração/diagnóstico por imagem , Modelos Teóricos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA