Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 41(1): 2354435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38754976

RESUMO

INTRODUCTION: Psoriasis is characterized by an increase in the proliferation of keratinocytes and nerve fiber activity, contributing to the typical skin lesions. Pulsed Dye Laser (PDL) treatment is effective for the treatment of psoriatic lesions but its mechanism remains unclear. One hypothesis is that PDL causes thermal damage by the diffusion of heat to neighboring structures in lesional skin. There is limited information on the thermal sensitivity of these neighboring skin cells when exposed to hyperthermia for durations lasting less than a minute. Our study aimed to investigate the cell-specific responses to heat using sub-minute exposure times and moderate to ablative hyperthermia. MATERIALS AND METHODS: Cultured human endothelial cells, smooth muscle cells, neuronal cells, and keratinocytes were exposed to various time (2-20 sec) and temperature (45-70 °C) combinations. Cell viability was assessed by measuring intracellular ATP content 24 h after thermal exposure and this data was used to calculate fit parameters for the Arrhenius model and CEM43 calculations. RESULTS: Our results show significant differences in cell survival between cell types (p < 0.0001). Especially within the range of 50-60 °C, survival of neuronal cells and keratinocytes was significantly less than that of endothelial and smooth muscle cells. No statistically significant difference was found in the lethal dose (LT50) of thermal energy between neuronal cells and keratinocytes. However, CEM43 calculations showed significant differences between all four cell types. CONCLUSION: The results imply that there is a cell-type-dependent sensitivity to thermal damage which suggests that neuronal cells and keratinocytes are particularly susceptible to diffusing heat from laser treatment. Damage to these cells may aid in modulating the neuro-inflammatory pathways in psoriasis. These data provide insight into the potential mechanisms of PDL therapy for psoriasis and advance our understanding of how thermal effects may play a role in its effectiveness.


Assuntos
Queratinócitos , Pele , Humanos , Pele/patologia , Pele/efeitos da radiação , Pele/lesões , Sobrevivência Celular/efeitos da radiação
2.
Lasers Surg Med ; 56(5): 508-522, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38576388

RESUMO

OBJECTIVES: Knowledge of the physical effects of pulsed dye laser (PDL) treatment of psoriatic lesions is essential in unraveling the remedial mechanisms of this treatment and hence also in maximizing in its disease-modifying potential. Therefore, the main objective of this study was to provide estimates of these physical effects (for laser wavelengths of 585 and 595 nm), with the aim of identifying pathogenic processes that may be affected by these conditions. METHODS: We modeled the laser light propagation and subsequent photothermal heating by numerically solving the transient diffusion and heat equations simultaneously. To this end, we used the finite element method in conjunction with an image-derived psoriatic lesion morphology (which was defined by segmenting blood vessels from a confocal microscopy image of a fluorescently labeled section of a 3 mm punch biopsy of a psoriatic lesion). The resulting predictions of the generated temperature field within the lesion were then used to assess the possibility of stalling or arresting some suspected pathogenic processes. RESULTS: According to our results, it is conceivable that perivascular nerves are thermally denatured, as almost all locations that reach 60°C were found to be within 18 µm (at 585 nm) and 11 µm (at 595 nm) of a blood vessel wall. Furthermore, activation of TRPV1 and TRPV2 channels in perivascular neuronal and immune cells is highly likely, since a critical temperature of 43°C is generated at locations within up to 350 µm of a vessel wall (at both wavelengths) and sustained for up to 700 ms (at 585 nm) and 40 ms (at 595 nm), while a critical temperature of 52°C is reached by locations within 80 µm (at 585 nm) and 30 µm (at 595 nm) of a vessel wall and sustained for up to 100 ms (at 585 nm) and 30 ms (at 595 nm). Finally, we found that the blood vessel coagulation-inducing temperature of 70°C is sustained in the vascular epithelium for up to 19 and 5 ms at 585 and 595 nm, respectively, rendering partial or total loss of vascular functionality a distinct possibility. CONCLUSIONS: The presented approach constitutes a useful tool to provide realistic estimates of the photothermal effects of PDL treatment of psoriatic plaques (as well as other selective photothermolysis-based treatments), yielding information that is essential in guiding future experimental studies toward unraveling the remedial mechanisms of these treatments.


Assuntos
Lasers de Corante , Psoríase , Humanos , Lasers de Corante/uso terapêutico , Psoríase/radioterapia , Psoríase/patologia , Psoríase/diagnóstico por imagem , Microscopia Confocal , Análise de Elementos Finitos , Modelos Biológicos
3.
Exp Dermatol ; 32(7): 1165-1173, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37083107

RESUMO

Pulsed dye laser (PDL) therapy can be effective in treating psoriasis, with a long duration of remission. Although PDL therapy, albeit on a modest scale, is being used for decades now, the underlying mechanisms responsible for the long-term remission of psoriasis remain poorly understood. The selective and rapid absorption of energy by the blood causes heating of the vascular wall and surrounding structures, like perivascular nerves. Several studies indicate the importance of nerves in psoriatic inflammation. Interestingly, denervation leads to a spontaneous remission of the psoriatic lesion. Among all dermal nerves, the perivascular nerves are the most likely to be affected during PDL treatment, possibly impairing the neuro-inflammatory processes that promote T-cell activation, expression of adhesion molecules, leukocyte infiltration and cytokine production. Repeated PDL therapy could cause a prolonged loss of innervation through nerve damage, or result in a 'reset' of neurogenic inflammation after temporary denervation. The current hypothesis provides strong arguments that PDL treatment affects nerve fibres in the skin and thereby abrogates the persistent and exaggerated inflammatory process underlying psoriasis, causing a long-term remission of psoriasis.


Assuntos
Lasers de Corante , Terapia com Luz de Baixa Intensidade , Psoríase , Humanos , Lasers de Corante/uso terapêutico , Resultado do Tratamento , Psoríase/patologia , Pele/patologia
4.
Nanoscale ; 13(17): 8224-8234, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33885075

RESUMO

Bacterial infections are one of the main health concerns humanity faces today and bacterial resistances and protection mechanisms are set to aggravate the issue in the coming years. An increasing number of bacterial strains evades antibiotic treatment by hiding inside cells. Conventional antimicrobial agents are unable to penetrate or be retained in the infected mammalian cells. Recent approaches to overcome these limitations have focused on load-carrier systems, requiring a triggered discharge leading to complex release kinetics. The unison of potent antimicrobial activity with high mammalian cell compatibility is a prerequisite for intracellular activity, which is not well-met by otherwise well-established inorganic systems, such as silver-based nanoparticles. In this work, load and carrier are combined into one functional inorganic nanoparticle system, which unites antimicrobial activity with mammalian cell compatibility. These multicomponent nanohybrids based on cerium oxide are produced in one step, yet unite complex materials. The nanoparticles form suprastructures of similar size and surface charge as bacteria, therefore facilitating the uptake into the same subcellular compartments, where they unleash their antibacterial effect. Such intrinsically antibacterial nanohybrids significantly reduce bacterial survival inside macrophages without harming the latter. Furthermore, blocking of nanoparticle endocytosis and subcellular electron microscopy elucidate the mechanism of action. Taken together, this work presents the first demonstration of antibacterial activity of ceria-based nanoparticles inside of mammalian cells and offers a route to straightforward and robust intracellular antibacterial agents that do not depend on payload delivery or biological constituents.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Nanopartículas Metálicas , Animais , Antibacterianos/farmacologia , Bactérias , Humanos , Macrófagos , Nanopartículas Metálicas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...