Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38894421

RESUMO

Steel structures are susceptible to corrosion due to their exposure to the environment. Currently used non-destructive techniques require inspector involvement. Inaccessibility of the defective part may lead to unnoticed corrosion, allowing the corrosion to propagate and cause catastrophic structural failure over time. Autonomous corrosion detection is essential for mitigating these problems. This study investigated the effect of the type of encoder-decoder neural network and the training strategy that works the best to automate the segmentation of corroded pixels in visual images. Models using pre-trained DesnseNet121 and EfficientNetB7 backbones yielded 96.78% and 98.5% average pixel-level accuracy, respectively. Deeper EffiecientNetB7 performed the worst, with only 33% true-positive values, which was 58% less than ResNet34 and the original UNet. ResNet 34 successfully classified the corroded pixels, with 2.98% false positives, whereas the original UNet predicted 8.24% of the non-corroded pixels as corroded when tested on a specific set of images exclusive to the investigated training dataset. Deep networks were found to be better for transfer learning than full training, and a smaller dataset could be one of the reasons for performance degradation. Both fully trained conventional UNet and ResNet34 models were tested on some external images of different steel structures with different colors and types of corrosion, with the ResNet 34 backbone outperforming conventional UNet.

2.
Data Brief ; 21: 1664-1668, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30505897

RESUMO

SDNET2018 is an annotated image dataset for training, validation, and benchmarking of artificial intelligence based crack detection algorithms for concrete. SDNET2018 contains over 56,000 images of cracked and non-cracked concrete bridge decks, walls, and pavements. The dataset includes cracks as narrow as 0.06 mm and as wide as 25 mm. The dataset also includes images with a variety of obstructions, including shadows, surface roughness, scaling, edges, holes, and background debris. SDNET2018 will be useful for the continued development of concrete crack detection algorithms based on deep convolutional neural networks (DCNNs), which are a subject of continued research in the field of structural health monitoring. The authors present benchmark results for crack detection using SDNET2018 and a crack detection algorithm based on the AlexNet DCNN architecture. SDNET2018 is freely available at https://doi.org/10.15142/T3TD19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...