Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 26(6): 1996-2012, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32541930

RESUMO

Microvascular pathology and ischemic lesions contribute substantially to neuronal dysfunction and loss that lead to Alzheimer disease (AD). To facilitate recovery, the brain stimulates neovascularization of damaged tissue via sprouting angiogenesis, a process regulated by endothelial cell (EC) sprouting and the EphB4/ephrinB2 system. Here, we show that in cultures of brain ECs, EphB4 stimulates the VE-cadherin/Rok-α angiogenic complexes known to mediate sprouting angiogenesis. Importantly, brain EC cultures expressing PS1 FAD mutants decrease the EphB4-stimulated γ-secretase cleavage of ephrinB2 and reduce production of the angiogenic peptide ephrinB2/CTF2, the VE-cadherin angiogenic complexes and EC sprouting and tube formation. These data suggest that FAD mutants may attenuate ischemia-induced brain angiogenesis. Supporting this hypothesis, ischemia-induced VE-cadherin angiogenic complexes, levels of neoangiogenesis marker Endoglin, vascular density, and cerebral blood flow recovery, are all decreased in brains of mouse models expressing PS1 FAD mutants. Ischemia-induced brain neuronal death and cognitive deficits also increase in these mice. Furthermore, a small peptide comprising the C-terminal sequence of peptide ephrinB2/CTF2 rescues angiogenic functions of brain ECs expressing PS1 FAD mutants. Together, our data show that PS1 FAD mutations impede the EphB4/ephrinB2-mediated angiogenic functions of ECs and impair brain neovascularization, neuronal survival and cognitive recovery following ischemia. Furthermore, our data reveal a novel brain angiogenic mechanism targeted by PS1 FAD mutants and a potential therapeutic target for ischemia-induced neurodegeneration. Importantly, FAD mutant effects occur in absence of neuropathological hallmarks of AD, supporting that such hallmarks may form downstream of mutant effects on neoangiogenesis and neuronal survival.


Assuntos
Efrina-B2 , Flavina-Adenina Dinucleotídeo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Transporte , Efrina-B2/genética , Efrina-B2/metabolismo , Camundongos , Presenilina-1/genética
2.
J Biomech ; 114: 110152, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33285491

RESUMO

Sex and joint injury are risk factors implicated in the onset and progression of osteoarthritis (OA). In mouse models of post-traumatic OA (ptOA), the pathogenesis of disease is notably impacted by sex (often worse in males) and injury model (e.g. meniscal versus ligament injury). Increasing ptOA progression and severity is often associated with greater relative instability of the joint but few studies have directly quantified changes in joint mechanics after injury and compared outcomes across multiple models in both male and female mice. Passive anterior-posterior knee biomechanics were evaluated in 10-week-old, male and female C57BL/6J mice. PtOA injury models included destabilisation of the medial meniscus (DMM), anterior cruciate ligament transection (ACLT) or mechanical rupture (ACLR), and combined DMM and ACLT (DMM + ACLT). Sham operated and non-operated controls (NOC) were included for baseline comparisons. The test apparatus loaded hindlimbs at 60° flexion between ± 1 N at 0.5 mm/s (build specifications available for download: https://doi.org/10.17632/z754455x3c.1). Measures of joint laxity (range of motion, neutral zone) and stiffness were calculated. Joint laxity was comparable between male and female mice while joint stiffness was greater in females (P ≤ 0.002, correcting for body-mass and injury-model). Anterior-posterior joint mechanics were minimally altered by DMM but significantly affected by loss of the ACL (P < 0.001), with equivalent changes between ACL-injury models despite different injury mechanisms and adjacent meniscal damage. These findings suggest that despite the important role of joint injury; sex- and model-specific differences in ptOA progression and severity are not primarily driven by altered anterior-posterior knee biomechanics.


Assuntos
Lesões do Ligamento Cruzado Anterior , Osteoartrite do Joelho , Osteoartrite , Animais , Lesões do Ligamento Cruzado Anterior/complicações , Fenômenos Biomecânicos , Feminino , Articulação do Joelho , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite do Joelho/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...