Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 869, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052826

RESUMO

We present a European Union (EU)-wide dataset of estimated quantities of active substances of plant protection product applied on crops (also called "emissions"). Our estimates are derived from data reported by eight EU countries and extrapolated to encompass all EU regions using regression models. These models consider both climate and agricultural land use data. This allows us to spatially represent pesticide use at NUTS Level 3 of the European statistical mapping units, and within various agricultural land cover classes in each region. We compare our estimates with aggregated data provided by EUROSTAT and with independent, detailed data for the United Kingdom, highlighting an error typically within one order of magnitude. Our estimates can provide insights into the distribution and patterns of pesticide use in the EU around the year 2015. The estimate is most reliable for Western and Southern Europe. Outside these regions, data scarcity makes extrapolation more uncertain, potentially limiting the ability to accurate depict regional variations in pesticide use.


Assuntos
Praguicidas , Agricultura , Clima , Europa (Continente) , União Europeia , Praguicidas/análise
2.
Sci Rep ; 11(1): 12163, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108503

RESUMO

Urban greening is an effective mitigation option for climate change in urban areas. In this contribution, a European Union (EU)-wide assessment is presented to quantify the benefits of urban greening in terms of availability of green water, reduction of cooling costs and CO2 sequestration from the atmosphere, for different climatic scenarios. Results show that greening of 35% of the EU's urban surface (i.e. more than 26,000 km2) would avoid up to 55.8 Mtons year-1 CO2 equivalent of greenhouse gas emissions, reducing energy demand for the cooling of buildings in summer by up to 92 TWh per year, with a net present value (NPV) of more than 364 billion Euro. It would also transpire about 10 km3 year-1 of rain water, turning into "green" water about 17.5% of the "blue" water that is now urban runoff, helping reduce pollution of the receiving water bodies and urban flooding. The greening of urban surfaces would decrease their summer temperature by 2.5-6 °C, with a mitigation of the urban heat island effect estimated to have a NPV of 221 billion Euro over a period of 40 years. The monetized benefits cover less than half of the estimated costs of greening, having a NPV of 1323 billion Euro on the same period. Net of the monetized benefits, the cost of greening 26,000 km2 of urban surfaces in Europe is estimated around 60 Euro year-1 per European urban resident. The additional benefits of urban greening related to biodiversity, water quality, health, wellbeing and other aspects, although not monetized in this study, might be worth such extra cost. When this is the case, urban greening represents a multifunctional, no-regret, cost-effective solution.

3.
J Hydrol Reg Stud ; 34: 100772, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33821201

RESUMO

STUDY REGION: This study considers daily time series of 14 years of weather parameters (temperature, wind speed, rainfall, vapor pressure and radiation) for 671 functional urban areas (FUA) across Europe, from a latitude of 35° (Cyprus) to 65° (Finland). STUDY FOCUS: Quantification of urban greening effects usually requires relatively complex and integrated models. In this contribution, we apply well-established hydrological, biomass and energy balance equations to derive meta-models for the estimation of runoff reduction, urban surface heating and thermal protection of buildings, in order to quantify the effects of the greening of 1 m2 of impervious surface (e.g. roofs, sealed ground surfaces and underground parking lots). NEW HYDROLOGICAL INSIGHTS FOR THE REGION: We propose empirical meta-models for the quick appraisal of urban greening benefits including: urban runoff reduction due to soil water retention and evapotranspiration, land surface temperature reduction, reduction of the indoor temperature beneath the greened surface, dry biomass growth. We show that the choice of vegetation growth parameters has a limited effect on the results, although the amount of produced bulk biomass obviously depends on vegetation type. The proposed meta-models can be applied for the assessment of urban greening benefits at the stage of policy evaluation, land planning and the programming of investments at regional or continental scale, before undertaking more detailed and site-specific calculations as required in the design phase.

4.
Sci Data ; 7(1): 33, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974365

RESUMO

Estimation of domestic waste emissions to waters is needed for pollution assessment and modelling. We assessed quantity and location of domestic waste emissions to European waters for the 2010s. Specifically, we considered discharges of domestic waste Population Equivalent (PE, the amount of waste that equals to 60 g per day of Biochemical Oxygen Demand), and mean annual loads (t/y) of total nitrogen, total phosphorus, and 5-days Biochemical Oxygen Demand. The spatial resolution and extent of the analysis corresponded to the CCM2 River and Catchment Database for Europe, for catchments of mean area of 6.4 km2. The assessment is based on available European databases that allowed pinpointing waste emissions to a high spatial and conceptual resolution. Content gaps, particularly concerning domestic waste from isolated dwellings, were filled through alternative sources of information, exploiting population density and national statistics data. The dataset is of interest for assessing waste emissions to and fate through European fresh and marine waters also beyond the three pollutants evaluated in this study.

5.
Sci Total Environ ; 666: 1089-1105, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30970475

RESUMO

Biochemical Oxygen Demand (BOD) is an indicator of organic pollution in freshwater bodies correlated to microbiological contamination. High BOD concentrations reduce oxygen availability, degrade aquatic habitats and biodiversity, and impair water use. High BOD loadings to freshwater systems are mainly coming from anthropogenic sources, comprising domestic and livestock waste, industrial emissions, and combined sewer overflows. We developed a conceptual model (GREEN+BOD) to assess mean annual current organic pollution (BOD fluxes) across Europe. The model was informed with the latest available European datasets of domestic and industrial emissions, population and livestock densities. Model parameters were calibrated using 2008-2012 mean annual BOD concentrations measured in 2157 European monitoring stations, and validated with other 1134 stations. The most sensitive model parameters were abatement of BOD by secondary treatment and the BOD decay exponent of travel time. The mean BOD concentrations measured in monitored stations was 2.10 mg O2/L and predicted concentrations were 2.54 mg O2/L; the 90th percentile of monitored BOD concentration was 3.51 mg O2/L while the predicted one was 4.76 mg O2/L. The model could correctly classify reaches for BOD concentrations classes, from high to poor quality, in 69% of cases. High overestimations (incorrect classification by 2 or more classes) were 2% and large underestimations were 5% of cases. Across Europe about 12% of freshwater network was estimated to be failing good quality due to excessive BOD concentrations (>5 mg O2/L). Dominant sources of BOD to freshwaters and seas were point sources and emissions from intensive livestock systems. Comparison with previous assessments confirms a decline of BOD pollution since the introduction of EU legislation regulating water pollution.


Assuntos
Análise da Demanda Biológica de Oxigênio/métodos , Monitoramento Ambiental , Água Doce/química , Oxigênio/análise , Poluição Química da Água/análise , Europa (Continente) , Modelos Teóricos , Estações do Ano
6.
Sci Total Environ ; 662: 434-445, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30690377

RESUMO

In this paper, we build a preliminary inventory of dissolved phase water emissions of 36 of the 45 chemical priority substances under the European Union's Water Framework Directive. For point sources, we consider the European Pollutant Release and Transfer Register (E-PRTR) containing reported emissions from major industrial facilities. We consider all other sources as diffuse, and we estimate European average chemical emission factors from available measurements of dissolved phase concentrations, assuming simple emission patterns such as population and agricultural land. The emission inventory enables modelling concentrations, which have been compared with independent measurements. Due to the way they are estimated, they cannot withstand a point-by-point comparison. However, predicted concentrations exhibit a frequency distribution and order of magnitude compatible with observations, and match a fair proportion of independently reported exceedances of environmental quality standards for many of the substances studied. While apparently a preliminary picture based on crude simplifications, our representation suggests that simple drivers such as population and agriculture are useful to describe chemical pollution at European scale. From our preliminary inventory, E-PRTR industrial point emissions seem to account for a relatively small share of total emissions. Consequently, apart from specific measures such as upgrades to urban wastewater treatment plants in certain high impact areas, the management of priority substances may require a more strategic approach to emission control, addressing chemical use across sectors and the management of out-phased, legacy chemicals. At the same time, we advocate that improving emission inventories requires monitoring data reflecting the variability of emission patterns across Europe, as presently available monitoring data do not enable a catchment-specific estimation of emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...