Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 16(3)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33291092

RESUMO

Osteochondral (OC) matrix design poses a significant engineering challenge due to the complexity involved with bone-cartilage interfaces. To better facilitate the regeneration of OC tissue, we developed and evaluated a biodegradable matrix with uniquely arranged bone and cartilage supporting phases: a poly(lactic-co-glycolic) acid (PLGA) template structure with a porosity gradient along its longitudinal axis uniquely integrated with hyaluronic acid hydrogel. Micro-CT scanning and imaging confirmed the formation of an inverse gradient matrix. Hydroxyapatite was added to the PLGA template which was then plasma-treated to increase hydrophilicity and growth factor affinity. An osteogenic growth factor (bone morphogenetic protein 2; BMP-2) was loaded onto the template scaffold via adsorption, while a chondrogenic growth factor (transforming growth factor beta 1; TGF-ß1) was incorporated into the hydrogel phase. Confocal microscopy of the growth factor loaded matrix confirmed the spatial distribution of the two growth factors, with chondrogenic factor confined to the cartilaginous portion and osteogenic factor present throughout the scaffold. We observed spatial differentiation of human mesenchymal stem cells (hMSCs) into cartilage and bone cells in the scaffoldsin vitro: cartilaginous regions were marked by increased glycosaminoglycan production, and osteogenesis was seen throughout the graft by alizarin red staining. In a dose-dependent study of BMP-2, hMSC pellet cultures with TGF-ß1 and BMP-2 showed synergistic effects on chondrogenesis. These results indicate that development of an inverse gradient matrix can spatially distribute two different growth factors to facilitate chondrogenesis and osteogenesis along different portions of a scaffold, which are key steps needed for formation of an OC interface.


Assuntos
Células-Tronco Mesenquimais , Cartilagem/metabolismo , Diferenciação Celular , Condrogênese , Humanos , Osteogênese , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fator de Crescimento Transformador beta1/metabolismo
2.
Tissue Eng Part A ; 23(15-16): 719-737, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28346796

RESUMO

Over the last decade, engineered structures have been developed for osteochondral (OC) tissue regeneration. While the optimal structure design is yet to be determined, these scaffolds require in vitro evaluation before clinical use. However, the means by which complex scaffolds, such as OC scaffolds, can be tested are limited. Taking advantage of a mesenchymal stem cell's (MSC's) ability to respond to its surrounding we harness external cues, such as the cell's mechanical environment and delivered factors, to create an in vitro culture system for OC tissue engineering with a single cell source on a gradient yet integrated scaffold system. To do this, the effect of hydrogel stiffness on the expression of human MSCs (hMSCs) chondrogenic differentiation was studied using histological analysis. Additionally, hMSCs were also cultured in different combinations of chondrogenic and osteogenic media to develop a co-differentiation media suitable for OC lineage differentiation. A uniquely graded (density-gradient matrix) OC scaffold with a distal cartilage hydrogel phase specifically tailored to support chondrogenic differentiation was cultured using a newly developed "simulated in vivo culture method." The scaffold's culture in co-differentiation media models hMSC infiltration into the scaffold and subsequent differentiation into the distal cartilage and proximal bone layers. Cartilage and bone marker staining along with specific matrix depositions reveal the effect of external cues on the hMSC differentiation. As a result of these studies a model system was developed to study and culture OC scaffolds in vitro.


Assuntos
Técnicas de Cultura de Células/métodos , Condrogênese , Osteogênese , Engenharia Tecidual/métodos , Biomarcadores/metabolismo , Osso e Ossos/metabolismo , Cartilagem/efeitos dos fármacos , Cartilagem/fisiologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Separação Celular , Condrogênese/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química
3.
Biotechnol Adv ; 31(5): 706-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23174560

RESUMO

Osteochondral defect management and repair remain a significant challenge in orthopedic surgery. Osteochondral defects contain damage to both the articular cartilage as well as the underlying subchondral bone. In order to repair an osteochondral defect the needs of the bone, cartilage and the bone-cartilage interface must be taken into account. Current clinical treatments for the repair of osteochondral defects have only been palliative, not curative. Tissue engineering has emerged as a potential alternative as it can be effectively used to regenerate bone, cartilage and the bone-cartilage interface. Several scaffold strategies, such as single phase, layered, and recently graded structures have been developed and evaluated for osteochondral defect repair. Also, as a potential cell source, tissue specific cells and progenitor cells are widely studied in cell culture models, as well with the osteochondral scaffolds in vitro and in vivo. Novel factor strategies being developed, including single factor, multi-factor, or controlled factor release in a graded fashion, not only assist bone and cartilage regeneration, but also establish osteochondral interface formation. The field of tissue engineering has made great strides, however further research needs to be carried out to make this strategy a clinical reality. In this review, we summarize current tissue engineering strategies, including scaffold design, bioreactor use, as well as cell and factor based approaches and recent developments for osteochondral defect repair. In addition, we discuss various challenges that need to be addressed in years to come.


Assuntos
Cartilagem Articular/citologia , Condrócitos/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA