Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 331(Pt 1): 121863, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37225074

RESUMO

The catalytic degradation of hazardous organic contaminants in industrial wastewater is a promising technology. Reactions of tartrazine, the synthetic yellow azo dye, with Oxone® in the presence of catalyst in strong acidic condition (pH 2), were detected by using UV-Vis spectroscopy. In order to extend the applicability profile of Co-supported Al-pillared montmorillonite catalyst an investigation of Oxone® induced reactions were performed in extreme acidic environment. The products of the reactions were identified by liquid chromatography-mass spectrometry (LC-MS). Along with the catalytic decomposition of tartrazine induced by radical attack (confirmed as unique reaction path under neutral and alkaline conditions), the formation of tartrazine derivatives by reaction of nucleophilic addition was also detected. The presence of derivatives under acidic conditions slowed down the hydrolysis of tartrazine diazo bond in comparison to the reactions in neutral environment. Nevertheless, the reaction in acidic conditions (pH 2) is faster than the one conducted in alkaline conditions (pH 11). Theoretical calculations were used to complete and clarify the mechanisms of tartrazine derivatization and degradation, as well as to predict the UV-Vis spectra of compounds which could serve as predictors of certain reaction phases. ECOSAR program, used to estimate toxicological profile of compounds to aquatic animals, indicated an increase in the harmfulness of the compounds identified by LC-MS as degradation products from the reaction conducted for 240min. It could be concluded that an intensification of the process parameters (higher concentration of Oxone®, higher catalyst loading, increased reaction time, etc.) is needed in order to obtain only biodegradable products.


Assuntos
Bentonita , Tartrazina , Tartrazina/química , Cobalto/química , Tecnologia
2.
Chem Biol Interact ; 351: 109708, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34666020

RESUMO

Herein, the stability, lipophilicity, in vitro cytotoxicity, and influence on acetylcholinesterase of five dinuclear platinum(II) complexes with the general formula [{Pt(en)Cl}2(µ-L)]2+ (L is a different aromatic nitrogen-containing heterocyclic bridging ligands pyrazine (pz, Pt1), pyridazine (pydz, Pt2), quinoxaline (qx, Pt3), phthalazine (phtz, Pt4) and quinazoline (qz, Pt5), while en is bidentate coordinated ethylenediamine) were evaluated. The most active analyzed platinum complexes induced time-dependent growth inhibition of A375, HeLa, PANC-1, and MRC-5 cells. The best efficiency was achieved on HeLa and PANC-1 cells for Pt1, Pt2, and Pt3 at the highest concentration, while Pt1 was significantly more potent than cisplatin at a lower concentration. Additionally, a lower effect on normal cells was observed compared to cisplatin, which may indicate potentially fewer side effects of these complexes. Selected complexes induce reactive oxygen species and apoptosis on tumor cell lines. The most potent reversible acetylcholinesterase (AChE) inhibitors were Pt2, Pt4, and Pt5. Pt1 showed similar inhibitory potential toward AChE as cisplatin, but a different type of inhibition, which could contribute to lower neurotoxicity. Docking studies revealed that Pt2 and Pt4 were bound to the active gorge above the catalytic triad. In contrast, the other complexes were bound to the edge of the active gorge without impeding the approach to the catalytic triad. According to this, Pt1 represents a promising compound with potent anticancer properties, high selectivity, and low neurotoxicity.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Colinesterase/farmacologia , Complexos de Coordenação/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Platina/química , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
3.
J Biol Inorg Chem ; 27(1): 65-79, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34714401

RESUMO

The mechanism of action of most approved drugs in use today is based on their binding to specific proteins or DNA. One of the achievements of this research is a new perspective for recognition of binding modes to DNA by monitoring of changes in measured and stoichiometric values of absorbance at 260 nm. UV-Vis and IR spectroscopy, gel electrophoresis and docking study were used for investigation of binding properties of three dinuclear platinum(II) complexes containing different pyridine-based bridging ligands, [{Pt(en)Cl}2(µ-4,4'-bipy)]Cl2·2H2O (Pt1), [{Pt(en)Cl}2(µ-bpa)]Cl2·4H2O (Pt2) and [{Pt(en)Cl}2(µ-bpe)]Cl2·4H2O (Pt3) to DNA (4,4'-bipy, bpa and bpe are 4,4'-bipyridine, 1,2-bis(4-pyridyl)ethane and 1,2-bis(4-pyridyl)ethene, respectively). In contrast to the system with well-known intercalated ligand (EtBr), covalently bound ligand (cis-Pt) and with minor groove binder (Hoechst 33258), which do not have significant differences in measured and stoichiometric values, the most pronounced deviations are recorded for two dinuclear platinum(II) complexes (Pt1 and Pt2), as a consequence of complex binding to the phosphate backbone and bending of DNA helix. The hydrolysis of complexes and changes in DNA conformation were also analysed as phenomena that may have an impact on the changes in absorbance.


Assuntos
Antineoplásicos , Platina , Antineoplásicos/química , DNA/química , Ligantes , Fosfatos , Platina/química
4.
Chemosphere ; 281: 130806, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34004519

RESUMO

The degradation of tartrazine in the presence of cobalt activated Oxone® (potassium peroxymonosulfate) was investigated at different initial pH values. Aluminum pillared clay had the role of a support for catalytically active cobalt oxide species. The degradation of tartrazine and the formation of a mixture of degradation products were monitored using the Ultraviolet-Visible (UV-Vis) spectroscopy and gas chromatography-mass spectrometry (GC-MS). The exact qualitative composition of this mixture and the determination of the most probable mechanism of degradation (the primary goal) were obtained using GC-MS. Besides, the main reaction pathway (reaction with SO4˙- radical anion) and secondary pathways were proposed depending on the pH value. At pH = 6 the reaction with HO˙ radical was proposed. At pH = 11 decarboxilation was suggested as the first step of the secondary proposed reaction pathway. The combination of results acquired from the deconvolution of UV-Vis spectra and the theoretical UV-Vis spectra of degradation products, whose occurrence was predicted by quantum-chemical calculations, was proven to be beneficial for the identification of tartrazine degradation products and for defining UV-Vis predictors of particular degradation steps. An additional contribution of this paper, from the reactivity aspect, was the establishment of the critical structural demand for the radical degradation of any diazo compound. The existence of a hydrogen atom bound to a diazo group was found to be the essential prerequisite for the radical cleavage of diazo compounds.


Assuntos
Tartrazina , Poluentes Químicos da Água , Concentração de Íons de Hidrogênio , Oxirredução , Ácidos Sulfúricos , Raios Ultravioleta , Poluentes Químicos da Água/análise
5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 1): 122-136, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831247

RESUMO

Statistical analysis of data from crystal structures extracted from the Cambridge Structural Database (CSD) has shown that S and Se atoms display a similar tendency towards specific types of interaction if they are part of a fragment that corresponds to the side chains of cysteine (Cys), methionine (Met) selenocysteine (Sec) and selenomethionine (Mse). The most numerous are structures with C-H...Se and C-H...S interactions (∼80%), notably less numerous are structures with Se...Se and S...S interactions (∼5%), and Se...π and S...π interactions are the least numerous. The results of quantum-chemical calculations have indicated that C-H...Se (∼-0.8 kcal mol-1) and C-H...S interactions are weaker than the most stable parallel interaction (∼-3.3 kcal mol-1) and electrostatic interactions of σ/π type (∼-2.6 kcal mol-1). Their significant presence can be explained by the abundance of CH groups compared with the numbers of Se and S atoms in the crystal structures, and also by the influence of substituents bonded to the Se or S atom that further reduce their possibilities for interacting with species from the environment. This can also offer an explanation as to why O-H...Se (∼-4.4 kcal mol-1) and N-H...Se interactions (∼-2.2 kcal mol-1) are less numerous. Docking studies revealed that S and Se rarely participate in interactions with the amino acid residues of target enzymes, mostly because those residues preferentially interact with the substituents bonded to Se and S. The differences between Se and S ligands in the number and positions of their binding sites are more pronounced if the substituents are polar and if there are more Se/S atoms in the ligand.


Assuntos
Simulação de Acoplamento Molecular , Teoria Quântica , Selênio/química , Enxofre/química , Cristalografia por Raios X , Substâncias Macromoleculares/química , Estrutura Molecular , Eletricidade Estática
6.
Chempluschem ; 85(6): 1220-1232, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32515167

RESUMO

A racemic spirohydantoin derivative with two aromatic substituents, a tetralin and a 4-methoxybenzyl unit, was synthesized and its crystal structure was determined. To define the relationship between molecular stereochemistry and spatial association modes, development of the crystal packing was analyzed through cooperativity of intermolecular interactions. Homo and heterochiral dimeric motifs were stabilized by intermolecular N-H⋅⋅⋅O, C-H⋅⋅⋅O, C-H⋅⋅⋅π interactions and parallel interactions at large offsets (PILO), thus forming alternating double layers. The greatest contribution to the total stabilization came from a motif of opposite enantiomers linked by N-H⋅⋅⋅O bonds (interaction energy=-13.72 kcal/mol), followed by a homochiral motif where the 4-methoxybenzyl units allowed C-H⋅⋅⋅π, C-H⋅⋅⋅O interactions and PILO (interaction energy=-11.56 kcal/mol). The number of the contact fragments in the environment of the tetralin unit was larger, but the 4-methoxybenzyl unit had greater contribution to the total stabilization. The statistical analysis of the data from the Cambridge Structural Database (CSD) showed that this is a general trend. The compound is a potential inhibitor of kinase enzymes and antigen protein-coupled receptors. A correlation between the docking study and the results of the CSD analysis can be drawn. Due to a greater flexibility, the 4-methoxybenzyl unit is more adaptable for interactions with the biological targets than the tetralin unit.


Assuntos
Hidantoínas/química , Compostos de Espiro/química , Tetra-Hidronaftalenos/química , Cristalografia por Raios X , Humanos , Hidantoínas/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Simulação de Acoplamento Molecular , Receptores de Dopamina D3/metabolismo , Compostos de Espiro/metabolismo , Estereoisomerismo , Tetra-Hidronaftalenos/metabolismo
7.
J Biol Inorg Chem ; 25(3): 395-409, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32162071

RESUMO

New anticancer platinum(II) compounds simultaneously targeting tumor cells and tumor-derived neoangiogenesis, with new DNA interacting mode and large therapeutic window are appealing alternative to improve efficacy of clinical platinum chemotherapeutics. Herein, we describe three novel dinuclear [{Pt(en)Cl}2(µ-L)]2+ complexes with different pyridine-like bridging ligands (L), 4,4'-bipyridine (Pt1), 1,2-bis(4-pyridyl)ethane (Pt2) and 1,2-bis(4-pyridyl)ethene (Pt3), which highly, positively charged aqua derivatives, [{Pt(en)(H2O)}2(µ-L)]4+, interact with the phosphate backbone forming DNA-Pt adducts with an unique and previously undescribed binding mode, called a minor groove covering. The results of this study suggested that the new binding mode of the aqua-Pt(II) complexes with DNA could be attributed to the higher anticancer activities of their chloride analogues. All three compounds, particularly complex [{Pt(en)Cl}2(µ-4,4'-bipy)]Cl2·2H2O (4,4'-bipy is 4,4'-bipyridine) (Pt1), overcame cisplatin resistance in vivo in the zebrafish-mouse melanoma xenograft model, showed much higher therapeutic potential than antiangiogenic drug sunitinib malate, while effectively blocking tumor neovascularization and melanoma cell metastasis. Overall therapeutic profile showed new dinuclear Pt(II) complexes could be novel, effective and safe anticancer agents. Finally, the correlation with the structural characteristics of these complexes can serve as a useful tool for developing new and more effective anticancer drugs.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , DNA/química , Neovascularização Patológica/tratamento farmacológico , Compostos Organoplatínicos/farmacologia , Piridinas/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Piridinas/química , Viscosidade , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...