Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 137(2): 299-303, 2004 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-15262074

RESUMO

Mitochondria are known to be localized in synaptic and non-synaptic compartments in the brain. Synaptoneurosomes, which contain high numbers of mitochondria, may act as a major contaminant of currently used isolation techniques. Currently, there is no method employed to successfully disrupt synaptoneurosomes and isolate both synaptic and non-synaptic mitochondria without structural or functional damage. A novel method is reported here for disruption of synaptoneurosomes and isolation of total brain mitochondria from synaptic and non-synaptic sources using a nitrogen decompression technique. Nitrogen gas was dissolved into crude mitochondrial preparations and maintained under constant, moderate pressure. After a short incubation, the pressure was released causing the nitrogen to come out of solution as growing bubbles, which ruptures cellular and synaptoneurosomal membranes. Mitochondria isolated using this rapid technique were bioenergetically competent and exhibited functional characteristics comparable to mitochondria isolated using traditional techniques. This nitrogen decompression technique will allow for further characterization of synaptic pools of mitochondria, which are almost exclusively neuronal in origin.


Assuntos
Encéfalo/citologia , Técnicas Citológicas/métodos , Mitocôndrias , Nitrogênio/farmacologia , Sinaptossomos/efeitos dos fármacos , Animais , Western Blotting/métodos , Digitonina/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Masculino , Microscopia Eletrônica/métodos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Consumo de Oxigênio , Porinas , Ratos , Frações Subcelulares , Canais de Ânion Dependentes de Voltagem
2.
Ann Neurol ; 55(4): 576-80, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15048898

RESUMO

Fatty acids are known to enhance mitochondrial uncoupling protein (UCP) activity. We asked whether a high-fat ketogenic diet (KD) increases UCP levels and activity in hippocampi of juvenile mice. Maximum mitochondrial respiration rates were significantly (p < 0.001) higher in KD- versus standard diet (SD)-treated animals, indicating increased UCP-mediated proton conductance that can reduce reactive oxygen species (ROS) production. Western blots showed significant (p < 0.05) or borderline significant increases in UCP2, UCP4, and UCP5 protein levels, and increased immunoreactivity to these three UCP isoforms was most prominently seen in the dentate gyrus of KD-fed mice. Finally, we found that oligomycin-induced ROS production was significantly (p < 0.05) lower in KD-fed mice than in SD controls. Collectively, our data suggest that a KD may exert neuroprotective effects by diminishing ROS production through activation of mitochondrial UCPs.


Assuntos
Proteínas de Transporte/biossíntese , Gorduras na Dieta/farmacologia , Cetonas/farmacologia , Proteínas de Membrana/biossíntese , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Proteínas de Transporte/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Canais Iônicos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C3H , Mitocôndrias/genética , Proteínas Mitocondriais , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 1
3.
Ann Neurol ; 53(6): 711-7, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12783416

RESUMO

Excitotoxic cell death is the fundamental process responsible for many human neurodegenerative disorders, yet the basic mechanisms involved are not fully understood. Here, we exploited the fact that the immature brain is remarkably resistant to seizure-induced excitotoxic cell death and examined the underlying protective mechanisms. We found that, unlike in the adult, seizures do not increase the formation of reactive oxygen species or result in mitochondrial dysfunction in neonatal brain, because of high levels of the mitochondrial uncoupling protein (UCP2). UCP2 expression and function were basally increased in neonatal brain by the fat-rich diet of maternal milk, and substituting a low-fat diet reduced UCP2, restored mitochondrial coupling, and permitted seizure-induced neuronal injury. Thus, modulation of UCP2 expression and function by dietary fat protects neonatal neurons from excitotoxicity by preventing mitochondrial dysfunction. This mechanism offers novel neuroprotective strategies for individuals, greater than 1% of the world's population, who are affected by seizures.


Assuntos
Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Ácido Caínico/efeitos adversos , Ácido Caínico/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Proteínas Mitocondriais , Neurotoxinas/efeitos adversos , Neurotoxinas/antagonistas & inibidores , Proteínas/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Anticorpos/imunologia , Proteínas de Transporte/imunologia , Hipocampo/efeitos dos fármacos , Imuno-Histoquímica , Canais Iônicos , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/metabolismo , Sistema Límbico/patologia , Proteínas de Membrana/imunologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Proteínas/imunologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Convulsões/induzido quimicamente , Proteína Desacopladora 1 , Proteína Desacopladora 2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...