Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mass Spectrom ; 48(12): 1253-65, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24338878

RESUMO

Resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOFMS) enables the fast and sensitive on-line monitoring of volatile organic compounds (VOC) formed during coffee roasting. On the one hand, REMPI-TOFMS was applied to monitor roasting gases of an industrial roaster (1500 kg/h capacity), with the aim of determining the roast degree in real-time from the transient chemical signature of VOCs. On the other hand, a previously developed µ-probe sampling device was used to analyse roasting gases from individual coffee beans. The aim was to explore fundamental processes at the individual bean level and link these to phenomena at the batch level. The pioneering single-bean experiments were conducted in two configurations: (1) VOCs formed inside a bean were sampled in situ, i.e. via a drilled µ-hole, from the interior, using a µ-probe (inside). (2) VOCs were sampled on-line in close vicinity of a single coffee bean's surface (outside). The focus was on VOCs originating from hydrolysis and pyrolytic degradation of chlorogenic acids, like feruloyl quinic acid and caffeoyl quinic acid. The single bean experiments revealed interesting phenomena. First, differences in time-intensity profiles between inside versus outside (time shift of maximum) were observed and tentatively linked to the permeability of the bean's cell walls material. Second, sharp bursts of some VOCs were observed, while others did exhibit smooth release curves. It is believed that these reflect a direct observation of bean popping during roasting. Finally, discrimination between Coffea arabica and Coffea canephora was demonstrated based on high-mass volatile markers, exclusively present in spectra of Coffea arabica.


Assuntos
Coffea/química , Espectrometria de Massas/métodos , Sementes/química , Manipulação de Alimentos , Temperatura Alta , Compostos Orgânicos Voláteis/química
2.
Anal Chem ; 73(17): 4171-80, 2001 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11569806

RESUMO

A new supersonic jet inlet system for resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (REMPI-TOFMS), based on a fused-silica capillary with an integral nozzle has been developed. The new jet inlet system generates a supersonic molecular beam that originates in the center of the ion source of the time-of-flight mass spectrometer. Because of the design of the inlet system, high spatial overlap of sample and laser beam (i.e., increased detection sensitivity) and excellent jet beam qualities are achieved with good adiabatic cooling properties of analyte molecules (i.e., considerably enhanced optical selectivity of the REMPI process). Furthermore, the inlet is very robust and chemically inert and contains no moving parts. As a result of these properties, the new inlet is perfectly suited for field applications of jet-REMPI. A first field application of a mobile supersonic jet-REMPI mass spectrometer equipped with the novel inlet technique is reported; namely, the concentration of monochlorobenzene, which is an indicator for the formation and emission of toxic polychlorinated dibenzo-p-dioxins/furans, PCDD/F) was measured on-line in the flue gas of a waste incineration plant.

3.
Anal Chem ; 71(1): 46-57, 1999 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21662925

RESUMO

A newly developed, mobile laser mass spectrometer (resonance-enhanced multiphoton ionization - time-of-flight mass spectrometer, REMPI-TOFMS) was applied to on-line measurements at a waste incineration pilot plant. REMPI-TOFMS combines the optical selectivity of resonance-enhanced multiphoton ionization with a time-of-flight mass analysis to give a two-dimensional analytical method. Special care was taken to build up a sampling and inlet system suitable for on-line measurements of large, semivolatile polycyclic aromatic hydrocarbons (PAHs). An effusive molecular beam inlet in combination with a fixed frequency UV laser (Nd:YAG at 266 nm or KrF excimer at 248 nm) was used. Under these conditions, many different PAHs can be ionized selectively from the complex flue gas matrix. For example, the achieved detection limit for naphthalene is in the 10 parts-per-trillion by volume (pptv) concentration range. Calibration was performed by using external concentration standards supplied in low ppbv concentrations. The instrumentation is sufficiently robust to be operated under industrial conditions at incineration plants, for instance. The REMPI mass spectra can be acquired at 5-50 Hz. Time profiles of the concentrations of different PAHs in the flue gas were monitored with a time resolution of 200 ms. Significant variations in the concentration profile of several PAHs up to mass 276 amu (e.g., benzo[ghi]perylene) and methylated PAHs have been observed while combustion parameters were changing. In summary, it was demonstrated that laser mass spectrometry (REMPI-TOFMS) enables a real-time on-line trace analysis of combustion flue gases or industrial process gases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...