Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dev Ctries ; 11(1): 51-57, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28141590

RESUMO

INTRODUCTION: The severity of urinary tract infection (UTI) produced by uropathogenic Escherichia coli (UPEC) is due to the expression of a wide spectrum of virulence genes. E. coli strains were divided into four phylogenetic groups (A, B1, B2 and D) based on their virulence genes. The present study aimed to assess the relationship between virulence genes, phylogenetic groups, and antibiotic resistance of UPEC. METHODOLOGY: A total of 148 E. coli were tested for antimicrobial resistance against 10 drugs using the disk diffusion method. The isolates were screened by polymerase chain reaction (PCR) for detection of virulence genes and categorized into the four major phylogenetic groups. RESULTS: Phylogenetic group B2 was predominant (33.8%), followed by D (28.4%), A (19.6), and B1 (18.2%). A higher prevalence of fimH (89.9%), fyuA (70.3%), traT (66.2%), iutA (62.2%), kpsMTII (58.8%), and aer (56.1%) genes were found in UPEC, indicating a putative role of adhesins, iron acquisition systems, and protectins that are main cause of UTIs. The most common antibiotic resistance was to cephalotin (85.1%), ampicillin (78.4%) and the least to nitrofurantoin (5.4%) and imipenem (2%). In total, 93.9% of isolates were multidrug resistant (MDR). CONCLUSIONS: This study showed that group B2 and D were the predominant phylogenetic groups and virulence-associated genes were mostly distributed in these groups. The virulence genes encoding components of adhesins, iron acquisition systems, and protectins were highly prevalent among antibiotic-resistant UPEC. Although the majority of strains are MDR, nitrofurantoin is the drug of choice for treatment of UTI patients in Ulaanbaatar.


Assuntos
Farmacorresistência Bacteriana , Infecções por Escherichia coli/microbiologia , Variação Genética , Filogenia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/isolamento & purificação , Fatores de Virulência/genética , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Infecções por Escherichia coli/epidemiologia , Genótipo , Humanos , Epidemiologia Molecular , Mongólia/epidemiologia , Reação em Cadeia da Polimerase , Prevalência , Infecções Urinárias/epidemiologia , Escherichia coli Uropatogênica/classificação , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/patogenicidade
2.
PeerJ ; 1: e176, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24133636

RESUMO

This study aimed to characterize Staphylococcus aureus (S. aureus) strains isolated from human infections in Mongolia. Infection samples were collected at two time periods (2007-08 and 2011) by the National Center for Communicable Diseases (NCCD) in Ulaanbaatar, Mongolia. S. aureus isolates were characterized using polymerase chain reaction (PCR) for mecA, PVL, and sasX genes and tested for agr functionality. All isolates were also spa typed. A subset of isolates selected by frequency of spa types was subjected to antimicrobial susceptibility testing and multilocus sequence typing. Among 251 S. aureus isolates, genotyping demonstrated methicillin resistance in 8.8% of isolates (22/251). Approximately 28% of the tested S. aureus isolates were observed to be multidrug resistant (MDR). Sequence type (ST) 154 (spa t667) was observed to be a strain with high virulence potential, as all isolates for this spa type were positive for PVL, had a functional agr system and 78% were MDR. S. aureus isolates of ST239 (spa t037) were observed to cause infections and roughly 60% had functional agr system with a greater proportion being MDR. Additionally, new multilocus sequence types and new spa types were identified, warranting continued surveillance for S. aureus in this region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...