Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Neurobiol ; 83: 102804, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913687

RESUMO

Calcium directly controls or indirectly regulates numerous functions that are critical for neuronal network activity. Intracellular calcium concentration is tightly regulated by numerous molecular mechanisms because spatial domains and temporal dynamics (not just peak amplitude) are critical for calcium control of synaptic plasticity and ion channel activation, which in turn determine neuron spiking activity. The computational models investigating calcium control are valuable because experiments achieving high spatial and temporal resolution simultaneously are technically unfeasible. Simulations of calcium nanodomains reveal that specific calcium sources can couple to specific calcium targets, providing a mechanism to determine the direction of synaptic plasticity. Cooperativity of calcium domains opposes specificity, suggesting that the dendritic branch might be the preferred computational unit of the neuron.


Assuntos
Cálcio , Neurônios , Cálcio/metabolismo , Neurônios/fisiologia , Plasticidade Neuronal/fisiologia , Sinalização do Cálcio/fisiologia , Sinapses/fisiologia
2.
Biomolecules ; 12(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36291612

RESUMO

Synaptic plasticity, the experience-induced change in connections between neurons, underlies learning and memory in the brain. Most of our understanding of synaptic plasticity derives from in vitro experiments with precisely repeated stimulus patterns; however, neurons exhibit significant variability in vivo during repeated experiences. Further, the spatial pattern of synaptic inputs to the dendritic tree influences synaptic plasticity, yet is not considered in most synaptic plasticity rules. Here, we investigate how spatiotemporal synaptic input patterns produce plasticity with in vivo-like conditions using a data-driven computational model with a plasticity rule based on calcium dynamics. Using in vivo spike train recordings as inputs to different size clusters of spines, we show that plasticity is strongly robust to trial-to-trial variability of spike timing. In addition, we derive general synaptic plasticity rules describing how spatiotemporal patterns of synaptic inputs control the magnitude and direction of plasticity. Synapses that strongly potentiated have greater firing rates and calcium concentration later in the trial, whereas strongly depressing synapses have hiring firing rates early in the trial. The neighboring synaptic activity influences the direction and magnitude of synaptic plasticity, with small clusters of spines producing the greatest increase in synaptic strength. Together, our results reveal that calcium dynamics can unify diverse plasticity rules and reveal how spatiotemporal firing rate patterns control synaptic plasticity.


Assuntos
Cálcio , Modelos Neurológicos , Potenciais de Ação/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 807-811, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086558

RESUMO

Executive function (EF) consists of higher level cognitive processes including working memory, cognitive flexibility, and inhibition which together enable goal-directed behaviors. Many neurological disorders are associated with EF dysfunctions which can lead to suboptimal behavior. To assess the roles of these processes, we introduce a novel behavioral task and modeling approach. The gamble-like task, with sub-tasks targeting different EF capabilities, allows for quantitative assessment of the main components of EF. We demonstrate that human participants exhibit dissociable variability in the component processes of EF. These results will allow us to map behavioral outcomes to EEG recordings in future work in order to map brain networks associated with EF deficits. Clinical relevance- This work will allow us to quantify EF deficits and corresponding brain activity in patient populations in future work.


Assuntos
Função Executiva , Memória de Curto Prazo , Encéfalo , Tomada de Decisões , Função Executiva/fisiologia , Humanos , Memória de Curto Prazo/fisiologia , Testes Neuropsicológicos
4.
Neuron ; 108(6): 1091-1102.e5, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33080228

RESUMO

Corticostriatal synaptic integration is partitioned among striosome (patch) and matrix compartments of the dorsal striatum, allowing compartmentalized control of discrete aspects of behavior. Despite the significance of such organization, it's unclear how compartment-specific striatal output is dynamically achieved, particularly considering new evidence that overlap of afferents is substantial. We show that dopamine oppositely shapes responses to convergent excitatory inputs in mouse striosome and matrix striatal spiny projection neurons (SPNs). Activation of postsynaptic D1 dopamine receptors promoted the generation of long-lasting synaptically evoked "up-states" in matrix SPNs but opposed it in striosomes, which were more excitable under basal conditions. Differences in dopaminergic modulation were mediated, in part, by dendritic voltage-gated calcium channels (VGCCs): pharmacological manipulation of L-type VGCCs reversed compartment-specific responses to D1 receptor activation. These results support a novel mechanism for the selection of striatal circuit components, where fluctuating levels of dopamine shift the balance of compartment-specific striatal output.


Assuntos
Corpo Estriado/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de Dopamina D1/antagonistas & inibidores , Animais , Benzazepinas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Corpo Estriado/metabolismo , Dendritos/metabolismo , Antagonistas de Dopamina/farmacologia , Isradipino/farmacologia , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
5.
Elife ; 72018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30355449

RESUMO

Synaptic plasticity, which underlies learning and memory, depends on calcium elevation in neurons, but the precise relationship between calcium and spatiotemporal patterns of synaptic inputs is unclear. Here, we develop a biologically realistic computational model of striatal spiny projection neurons with sophisticated calcium dynamics, based on data from rodents of both sexes, to investigate how spatiotemporally clustered and distributed excitatory and inhibitory inputs affect spine calcium. We demonstrate that coordinated excitatory synaptic inputs evoke enhanced calcium elevation specific to stimulated spines, with lower but physiologically relevant calcium elevation in nearby non-stimulated spines. Results further show a novel and important function of inhibition-to enhance the difference in calcium between stimulated and non-stimulated spines. These findings suggest that spine calcium dynamics encode synaptic input patterns and may serve as a signal for both stimulus-specific potentiation and heterosynaptic depression, maintaining balanced activity in a dendritic branch while inducing pattern-specific plasticity.


Assuntos
Cálcio/metabolismo , Modelos Neurológicos , Inibição Neural/fisiologia , Sinapses/metabolismo , Potenciais de Ação , Simulação por Computador , Espinhas Dendríticas/metabolismo , Potenciais Pós-Sinápticos Excitadores , Canais Iônicos/metabolismo , Neurônios/metabolismo
6.
Eur J Neurosci ; 45(8): 1044-1056, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27233469

RESUMO

The striatum is a major site of learning and memory formation for sensorimotor and cognitive association. One of the mechanisms used by the brain for memory storage is synaptic plasticity - the long-lasting, activity-dependent change in synaptic strength. All forms of synaptic plasticity require an elevation in intracellular calcium, and a common hypothesis is that the amplitude and duration of calcium transients can determine the direction of synaptic plasticity. The utility of this hypothesis in the striatum is unclear in part because dopamine is required for striatal plasticity and in part because of the diversity in stimulation protocols. To test whether calcium can predict plasticity direction, we developed a calcium-based plasticity rule using a spiny projection neuron model with sophisticated calcium dynamics including calcium diffusion, buffering and pump extrusion. We utilized three spike timing-dependent plasticity (STDP) induction protocols, in which postsynaptic potentials are paired with precisely timed action potentials and the timing of such pairing determines whether potentiation or depression will occur. Results show that despite the variation in calcium dynamics, a single, calcium-based plasticity rule, which explicitly considers duration of calcium elevations, can explain the direction of synaptic weight change for all three STDP protocols. Additional simulations show that the plasticity rule correctly predicts the NMDA receptor dependence of long-term potentiation and the L-type channel dependence of long-term depression. By utilizing realistic calcium dynamics, the model reveals mechanisms controlling synaptic plasticity direction, and shows that the dynamics of calcium, not just calcium amplitude, are crucial for synaptic plasticity.


Assuntos
Cálcio/metabolismo , Corpo Estriado/fisiologia , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Canais de Cálcio Tipo L/metabolismo , Simulação por Computador , Corpo Estriado/efeitos dos fármacos , Difusão , Feminino , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Inibição Neural/fisiologia , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Receptores de AMPA/metabolismo , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Tempo
7.
J Biomech Eng ; 136(10): 101002, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25010637

RESUMO

Whole body vibration has been postulated to contribute to the onset of back pain. However, little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to measure the frequency and corresponding muscle responses of seated male volunteers during whole body vibration exposures along the vertical and anteroposterior directions to define the transmissibility and associated muscle activation responses for relevant whole body vibration exposures. Seated human male volunteers underwent separate whole body vibration exposures in the vertical (Z-direction) and anteroposterior (X-direction) directions using sinusoidal sweeps ranging from 2 to 18 Hz, with a constant amplitude of 0.4 g. For each vibration exposure, the accelerations and displacements of the seat and lumbar and thoracic spines were recorded. In addition, muscle activity in the lumbar and thoracic spines was recorded using electromyography (EMG) and surface electrodes in the lumbar and thoracic region. Transmissibility was determined, and peak transmissibility, displacement, and muscle activity were compared in each of the lumbar and thoracic regions. The peak transmissibility for vertical vibrations occurred at 4 Hz for both the lumbar (1.55 ± 0.34) and thoracic (1.49 ± 0.21) regions. For X-directed seat vibrations, the transmissibility ratio in both spinal regions was highest at 2 Hz but never exceeded a value of 1. The peak muscle response in both spinal regions occurred at frequencies corresponding to the peak transmissibility, regardless of the direction of imposed seat vibration: 4 Hz for the Z-direction and 2-3 Hz for the X-direction. In both vibration directions, spinal displacements occurred primarily in the direction of seat vibration, with little off-axis motion. The occurrence of peak muscle responses at frequencies of peak transmissibility suggests that such frequencies may induce greater muscle activity, leading to muscle fatigue, which could be a contributing mechanism of back pain.


Assuntos
Vértebras Lombares , Fenômenos Mecânicos , Músculos , Postura , Vértebras Torácicas , Vibração , Voluntários , Adulto , Fenômenos Biomecânicos , Eletromiografia , Humanos , Vértebras Lombares/fisiologia , Masculino , Músculos/fisiologia , Vértebras Torácicas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...