Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39058164

RESUMO

Chlorpyrifos, an organophosphate insecticide widely used to control agricultural pests, poses a significant environmental threat due to its toxicity and persistence in soil and water. Our work aimed to evaluate the acute (survival) and chronic (regeneration, locomotion, and reproduction) toxicity of chlorpyrifos to the non-target freshwater planarian Girardia tigrina. The 48 h lethal concentration (LC50) of the commercial formulation, containing 480 g L-1 of chlorpyrifos, the active ingredient, was determined to be 622.8 µg a.i. L-1 for planarians. Sublethal effects were translated into a significant reduction in locomotion and delayed head regeneration (lowest observed effect concentration-LOEC = 3.88 µg a.i. L-1). Additionally, chlorpyrifos exposure did not affect planarian fecundity or fertility. Overall, this study demonstrates the potential of chlorpyrifos-based insecticides to harm natural populations of freshwater planarians at environmentally relevant concentrations. The observed toxicity emphasizes the need for stricter regulations and careful management of chlorpyrifos usage to mitigate its deleterious effects on aquatic ecosystems. By understanding the specific impacts on non-target organisms like G. tigrina, we can make more informed suggestions regarding the usage and regulation of organophosphate insecticides, ultimately promoting sustainable agricultural practices and environmental conservation.

2.
J Hazard Mater ; 404(Pt A): 124089, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049628

RESUMO

Microbial insecticides are being used as ecologically-friendly alternatives to traditional insecticides. However, their effects have been poorly investigated on non-target freshwater species, with exception of a few insect species. Moreover, combined effects of microbial insecticides with other environmental stressors, such as salinity, have never been investigated. Thus, our goal was to assess the effects of Bac-Control® (based in Bacillus thuringiensis - Btk) and Boveril® (based in Beauveria bassiana - Bb) with increasing salinities (NaCl) on freshwater planarian Girardia tigrina. It has been reported that increased salinity levels affect freshwater organisms compromising their survival by triggering adaptation processes to cope with osmotic stress. Our results showed delayed regeneration, decreased locomotion and feeding on planarians exposed to NaCl, whereas their sexual reproduction was not affected. Both microbial insecticides impaired feeding, locomotor activity, regeneration, and sexual reproduction of planarians. Planarians exposed to microbial insecticides compromised their progeny. Therefore, microbial insecticides might not be ecologically friendly alternatives to chemical insecticides. Interestingly, harmful effects of microbial insecticides with increasing salinities showed an inadequate response of planarians to cope with induction of their immune response and osmoregulation.


Assuntos
Planárias , Poluentes Químicos da Água , Animais , Agentes de Controle Biológico , Água Doce , Reprodução , Cloreto de Sódio , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA