Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38140505

RESUMO

The possibility of pigment detection and recognition in different environments such as solvents or proteins is a challenging, and at the same time demanding, task. It may be needed in very different situations: from the nondestructive in situ identification of pigments in paintings to the early detection of fungal infection in major agro-industrial crops and products. So, we propose a prototype method, the key feature of which is a procedure analyzing the lineshape of a spectrum. The shape of the absorption spectrum corresponding to this transition strongly depends on the immediate environment of a pigment and can serve as a marker to detect the presence of a particular pigment molecule in a sample. Considering carotenoids as an object of study, we demonstrate that the combined operation of the differential evolution algorithm and semiclassical quantum modeling of the optical response based on a generalized spectral density (the number of vibronic modes is arbitrary) allows us to distinguish quantum models of the pigment for different solvents. Moreover, it is determined that to predict the optical properties of monomeric pigments in protein, it is necessary to create a database containing, for each pigment, in addition to the absorption spectra measured in a predefined set of solvents, the parameters of the quantum model found using differential evolution.

2.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894773

RESUMO

This review is devoted to a topic of high interest in recent times-the use of plasma technologies in agriculture. The increased attention to these studies is primarily due to the demand for the intensification of food production and, at the same time, the request to reduce the use of pesticides. We analyzed publications, focusing on research conducted in the last 3 years, to identify the main achievements of plasma agrotechnologies and key obstacles to their widespread implementation in practice. We considered the main types of plasma sources used in this area, their advantages and limitations, which determine the areas of application. We also considered the use of plasma-activated liquids and the efficiency of their production by various types of plasma sources.


Assuntos
Praguicidas , Gases em Plasma , Agricultura , Alérgenos , Sementes
3.
PLoS One ; 17(7): e0267912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776728

RESUMO

Infection of seeds of cereal plants with fusarium affects their optical luminescent properties. The spectral characteristics of excitation (absorption) in the range of 180-700 nm of healthy and infected seeds of wheat, barley and oats were measured. The greatest difference in the excitation spectra of healthy and infected seeds was observed in the short-wave range of 220-450 nm. At the same time, the excitation characteristics of infected seeds were higher than those of healthy ones, and the integral parameter Η in the entire range was 10-56% higher. A new maximum appeared at the wavelength of 232 nm and the maximum value increased by 362 nm. The spectral characteristics were measured when excited by radiation at wavelengths of 232, 362, 424, 485, 528 nm and the luminescence fluxes were calculated. It is established that the photoluminescence fluxes Φ in the short-wave ranges of 290-380 nm increase by 1.58-3.14 times and 390-550 nm-by 1.44-2.54 times. The fluxes in longer wavelength ranges do not change systematically and less significantly: for wheat, they decrease by 12% and increase by 19%, for barley, they decrease by 10% and increase by 33%. The flux decreases by 43-71% for oats. Based on the results obtained for cereal seeds, it is possible to further develop a method for detecting fusarium infection with absolute measurements of photoluminescence fluxes in the range of 290-380 nm, or when measuring photoluminescence ratios: for wheat seeds when excited with wavelengths of 424 nm and 232 nm (Φ424/Φ232); for barley seeds-when excited with wavelengths of 485 nm and 232 nm (Φ485/Φ232) and for oat seeds-when excited with wavelengths of 424 nm and 362 nm (Φ424/Φ362).


Assuntos
Fusarium , Hordeum , Avena , Grão Comestível , Sementes , Triticum
4.
Biology (Basel) ; 11(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35053058

RESUMO

LED illumination can have a narrow spectral band; its intensity and time regime are regulated within a wide range. These characteristics are the potential basis for the use of a combination of LEDs for plant cultivation because light is the energy source that is used by plants as well as the regulator of photosynthesis, and the regulator of other physiological processes (e.g., plant development), and can cause plant damage under certain stress conditions. As a result, analyzing the influence of light spectra on physiological and growth characteristics during cultivation of different plant species is an important problem. In the present work, we investigated the influence of two variants of LED illumination (red light at an increased intensity, the "red" variant, and blue light at an increased intensity, the "blue" variant) on the parameters of photosynthetic dark and light reactions, respiration rate, leaf reflectance indices, and biomass, among other factors in lettuce (Lactuca sativa L.). The same light intensity (about 180 µmol m-2s-1) was used in both variants. It was shown that the blue illumination variant increased the dark respiration rate (35-130%) and cyclic electron flow around photosystem I (18-26% at the maximal intensity of the actinic light) in comparison to the red variant; the effects were dependent on the duration of cultivation. In contrast, the blue variant decreased the rate of the photosynthetic linear electron flow (13-26%) and various plant growth parameters, such as final biomass (about 40%). Some reflectance indices (e.g., the Zarco-Tejada and Miller Index, an index that is related to the core sizes and light-harvesting complex of photosystem I), were also strongly dependent on the illumination variant. Thus, our results show that the red illumination variant contributes a great deal to lettuce growth; in contrast, the blue variant contributes to stress changes, including the activation of cyclic electron flow around photosystem I.

5.
Plants (Basel) ; 10(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202814

RESUMO

The effects of different spectral compositions of light-emitting diode (LED) sources and fertilizer containing biologically active silicon (Si) in the nutrient solution on morphological and physiological plant response were studied. Qualitative indicators and the productivity of plants of a red-leaved and a green-leaved lettuce were estimated. Lettuce was grown applying low-volume hydroponics in closed artificial agroecosystems. The positive effect of Si fertilizer used as a microadditive in the nutrient solution on the freshly harvested biomass was established on the thirtieth day of vegetation under LEDs. Increase in productivity of the red-leaved lettuce for freshly harvested biomass was 26.6%, while for the green-leaved lettuce no loss of dry matter was observed. However, being grown under sodium lamps, a negative impact of Si fertilizer on productivity of both types of plants was observed: the amount of harvested biomass decreased by 22.6% and 30.3% for the green- and red-leaved lettuces, respectively. The effect of using Si fertilizer dramatically changed during the total growing period: up to the fifteenth day of cultivation, a sharp inhibition of the growth of both types of lettuce was observed; then, by the thirtieth day of LED lighting, Si fertilizer showed a stress-protective effect and had a positive influence on the plants. However, by the period of ripening there was no effect of using the fertilizer. Therefore, we can conclude that the use of Si fertilizers is preferable only when LED irradiation is applied throughout the active plant growth period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...