Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38979264

RESUMO

Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) constitute members of the dual-specificity family of protein phosphatases that dephosphorylate the MAPKs. MKP-5 dephosphorylates the stress-responsive MAPKs, p38 MAPK and JNK, and has been shown to promote tissue fibrosis. Here, we provide insight into how MKP-5 regulates the transforming growth factor-ß (TGF-ß) pathway, a well-established driver of fibrosis. We show that MKP-5-deficient fibroblasts in response to TGF-ß are impaired in SMAD2 phosphorylation at canonical and non-canonical sites, nuclear translocation, and transcriptional activation of fibrogenic genes. Consistent with this, pharmacological inhibition of MKP-5 is sufficient to block TGF-ß signaling, and that this regulation occurs through a JNK-dependent pathway. By utilizing RNA sequencing and transcriptomic analysis, we identify TGF-ß signaling activators regulated by MKP-5 in a JNK-dependent manner, providing mechanistic insight into how MKP-5 promotes TGF-ß signaling. This study elucidates a novel mechanism whereby MKP-5-mediated JNK inactivation is required for TGF-ß signaling and provides insight into the role of MKP-5 in fibrosis.

2.
Methods Mol Biol ; 2743: 123-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38147212

RESUMO

Protein tyrosine phosphorylation and dephosphorylation are key regulatory mechanisms in eukaryotes. Protein tyrosine phosphorylation and dephosphorylation are catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. The combinatorial action of both PTKs and PTPs is essential for properly maintaining cellular functions. In this unit, we discuss different novel methods to identify PTP substrates. PTPs depend on specific invariant residues that enable binding to tyrosine-phosphorylated substrates and aid catalytic activity. Identifying PTP substrates has paved the way to understanding their role in distinct intracellular signaling pathways. Due to their high specific activity, the interaction between PTPs and their substrates is transient; therefore, identifying the physiological substrates of PTPs has been challenging. To identify the physiological substrates of PTPs, various PTP mutants have been generated. These PTP mutants, named "substrate-trapping mutants," lack catalytic activity but bind tightly to their tyrosine-phosphorylated substrates. Identifying the substrates for the PTPs will provide critical insight into the function of physiological and pathophysiological signal transduction. In this chapter, we describe interaction assays used to identify the PTP substrates.


Assuntos
Proteínas Tirosina Fosfatases , Transdução de Sinais , Proteínas Tirosina Fosfatases/genética , Fosforilação , Proteínas Tirosina Quinases , Tirosina
3.
J Biol Chem ; 298(12): 102617, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272649

RESUMO

The dual-specificity phosphatases responsible for the inactivation of the mitogen-activated protein kinases (MAPKs) are designated as the MAPK phosphatases (MKPs). We demonstrated previously that MKP5 is regulated through a novel allosteric site suggesting additional regulatory mechanisms of catalysis exist amongst the MKPs. Here, we sought to determine whether the equivalent site within the phosphatase domain of a highly similar MKP family member, MKP7, is also important for phosphatase function. We found that mutation of tyrosine 271 (Y271) in MKP7, which represents the comparable Y435 within the MKP5 allosteric pocket, inhibited MKP7 catalytic activity. Consistent with this, when MKP7 Y271 mutants were overexpressed in cells, the substrates of MKP7, p38 MAPK or JNK, failed to undergo dephosphorylation. The binding efficiency of MKP7 to p38 MAPK and JNK1/2 was also reduced when MKP7 Y271 is mutated. Consistent with reduced MAPK binding, we observed a greater accumulation of nuclear p38 MAPK and JNK when the MKP7 Y271 mutants are expressed in cells as compared with WT MKP7, which sequesters p38 MAPK/JNK in the cytoplasm. Therefore, we propose that Y271 is critical for effective MAPK dephosphorylation through a mechanism whereby binding to this residue precedes engagement of the catalytic site and upon overexpression, MKP7 allosteric site mutants potentiate MAPK signaling. These results provide insight into the regulatory mechanisms of MKP7 catalysis and interactions with the MAPKs. Furthermore, these data support the generality of the MKP allosteric site and provide a basis for small molecule targeting of MKP7.


Assuntos
Fosfatases de Especificidade Dupla , Fosfatases da Proteína Quinase Ativada por Mitógeno , Proteínas Tirosina Fosfatases , Catálise , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Humanos , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...