Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(22): eadn2208, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820156

RESUMO

PR65 is the HEAT repeat scaffold subunit of the heterotrimeric protein phosphatase 2A (PP2A) and an archetypal tandem repeat protein. Its conformational mechanics plays a crucial role in PP2A function by opening/closing substrate binding/catalysis interface. Using in silico saturation mutagenesis, we identified PR65 "hinge" residues whose substitutions could alter its conformational adaptability and thereby PP2A function, and selected six mutations that were verified to be expressed and soluble. Molecular simulations and nanoaperture optical tweezers revealed consistent results on the specific effects of the mutations on the structure and dynamics of PR65. Two mutants observed in simulations to stabilize extended/open conformations exhibited higher corner frequencies and lower translational scattering in experiments, indicating a shift toward extended conformations, whereas another displayed the opposite features, confirmed by both simulations and experiments. The study highlights the power of single-molecule nanoaperture-based tweezers integrated with in silico approaches for exploring the effect of mutations on protein structure and dynamics.


Assuntos
Simulação de Dinâmica Molecular , Pinças Ópticas , Mutação Puntual , Conformação Proteica , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/química , Proteína Fosfatase 2/metabolismo , Humanos
2.
Res Sq ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014259

RESUMO

PR65 is the HEAT-repeat scaffold subunit of the heterotrimeric protein phosphatase 2A (PP2A) and an archetypal tandem-repeat protein, forming a spring-like architecture. PR65 conformational mechanics play a crucial role in PP2A function by opening/closing the substrate-binding/catalysis interface. Using in-silico saturation mutagenesis we identified "hinge" residues of PR65, whose substitutions are predicted to restrict its conformational adaptability and thereby disrupt PP2A function. Molecular simulations revealed that a subset of hinge mutations stabilized the extended/open conformation, whereas another had the opposite effect. By trapping in nanoaperture optical tweezer, we characterized PR65 motion and showed that the former mutants exhibited higher corner frequencies and lower translational scattering, indicating a shift towards extended conformations, whereas the latter showed the opposite behavior. Thus, experiments confirm the conformations predicted computationally. The study highlights the utility of nanoaperture-based tweezers for exploring structure and dynamics, and the power of integrating this single-molecule method with in silico approaches.

3.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37115636

RESUMO

MOTIVATION: Allostery enables changes to the dynamic behavior of a protein at distant positions induced by binding. Here, we present APOP, a new allosteric pocket prediction method, which perturbs the pockets formed in the structure by stiffening pairwise interactions in the elastic network across the pocket, to emulate ligand binding. Ranking the pockets based on the shifts in the global mode frequencies, as well as their mean local hydrophobicities, leads to high prediction success when tested on a dataset of allosteric proteins, composed of both monomers and multimeric assemblages. RESULTS: Out of the 104 test cases, APOP predicts known allosteric pockets for 92 within the top 3 rank out of multiple pockets available in the protein. In addition, we demonstrate that APOP can also find new alternative allosteric pockets in proteins. Particularly interesting findings are the discovery of previously overlooked large pockets located in the centers of many protein biological assemblages; binding of ligands at these sites would likely be particularly effective in changing the protein's global dynamics. AVAILABILITY AND IMPLEMENTATION: APOP is freely available as an open-source code (https://github.com/Ambuj-UF/APOP) and as a web server at https://apop.bb.iastate.edu/.


Assuntos
Proteínas , Software , Proteínas/química , Ligantes , Ligação Proteica , Sítios de Ligação , Conformação Proteica , Sítio Alostérico
4.
Structure ; 31(5): 607-618.e3, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36948205

RESUMO

PR65, a horseshoe-shaped scaffold composed of 15 HEAT (observed in Huntingtin, elongation factor 3, protein phosphatase 2A, and the yeast kinase TOR1) repeats, forms, together with catalytic and regulatory subunits, the heterotrimeric protein phosphatase PP2A. We examined the role of PR65 in enabling PP2A enzymatic activity with computations at various levels of complexity, including hybrid approaches that combine full-atomic and elastic network models. Our study points to the high flexibility of this scaffold allowing for end-to-end distance fluctuations of 40-50 Å between compact and extended conformations. Notably, the intrinsic dynamics of PR65 facilitates complexation with the catalytic subunit and is retained in the PP2A complex enabling PR65 to engage the two domains of the catalytic subunit and provide the mechanical framework for enzymatic activity, with support from the regulatory subunit. In particular, the intra-repeat coils at the C-terminal arm play an important role in allosterically mediating the collective dynamics of PP2A, pointing to target sites for modulating PR65 function.


Assuntos
Proteína Fosfatase 2 , Proteína Fosfatase 2/genética , Regulação Alostérica , Ligação Proteica , Domínio Catalítico
5.
Cell Rep ; 40(3): 111110, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858570

RESUMO

Emerging evidence suggests that G protein-coupled receptor (GPCR) kinases (GRKs) are associated with the pathophysiology of Alzheimer's disease (AD). However, GRKs have not been directly implicated in regulation of the amyloid-ß (Aß) pathogenic cascade in AD. Here, we determine that GRKs phosphorylate a non-canonical substrate, anterior pharynx-defective 1A (APH1A), an integral component of the γ-secretase complex. Significantly, we show that GRKs generate distinct phosphorylation barcodes in intracellular loop 2 (ICL2) and the C terminus of APH1A, which differentially regulate recruitment of the scaffolding protein ß-arrestin 2 (ßarr2) to APH1A and γ-secretase-mediated Aß generation. Further molecular dynamics simulation studies reveal an interaction between the ßarr2 finger loop domain and ICL2 and ICL3 of APH1A, similar to a GPCR-ß-arrestin complex, which regulates γ-secretase activity. Collectively, these studies provide insight into the molecular and structural determinants of the APH1A-ßarr2 interaction that critically regulate Aß generation.


Assuntos
Doença de Alzheimer , Endopeptidases/metabolismo , Quinases de Receptores Acoplados a Proteína G , Proteínas de Membrana/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Humanos , Fosforilação/fisiologia , beta-Arrestina 2/metabolismo , beta-Arrestinas/metabolismo
6.
J Mol Biol ; 434(17): 167690, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35728652

RESUMO

Accurate development of allosteric modulators of GPCRs require a thorough assessment of their sequence, structure, and dynamics, toward gaining insights into their mechanisms of actions shared by family members, as well as dynamic features that distinguish subfamilies. Building on recent progress in the characterization of the signature dynamics of proteins, we analyzed here a dataset of 160 Class A GPCRs to determine their sequence similarities, structural landscape, and dynamic features across different species (human, bovine, mouse, squid, and rat), different activation states (active/inactive), and different subfamilies. The two dominant directions of variability across experimentally resolved structures, identified by principal component analysis of the dataset, shed light to cooperative mechanisms of activation, subfamily differentiation, and speciation of Class A GPCRs. The analysis reveals the functional significance of the conformational flexibilities of specific structural elements, including: the dominant role of the intracellular loop 3 (ICL3) together with the cytoplasmic ends of the adjoining helices TM5 and TM6 in enabling allosteric activation; the role of particular structural motifs at the extracellular loop 2 (ECL2) connecting TM4 and TM5 in binding ligands specific to different subfamilies; or even the differentiation of the N-terminal conformation across different species. Detailed analyses of the modes of motions accessible to the members of the dataset and their variations across members demonstrate how the active and inactive states of GPCRs obey distinct conformational dynamics. The collective fluctuations of the GPCRs are robustly defined in the active state, while the inactive conformers exhibit broad variance among members.


Assuntos
Receptores Acoplados a Proteínas G , Animais , Bovinos , Conjuntos de Dados como Assunto , Humanos , Ligantes , Camundongos , Simulação de Dinâmica Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Ratos , Receptores Acoplados a Proteínas G/química
7.
Front Mol Biosci ; 9: 832847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187088

RESUMO

Recent years have seen several hybrid simulation methods for exploring the conformational space of proteins and their complexes or assemblies. These methods often combine fast analytical approaches with computationally expensive full atomic molecular dynamics (MD) simulations with the goal of rapidly sampling large and cooperative conformational changes at full atomic resolution. We present here a systematic comparison of the utility and limits of four such hybrid methods that have been introduced in recent years: MD with excited normal modes (MDeNM), collective modes-driven MD (CoMD), and elastic network model (ENM)-based generation, clustering, and relaxation of conformations (ClustENM) as well as its updated version integrated with MD simulations (ClustENMD). We analyzed the predicted conformational spaces using each of these four hybrid methods, applied to four well-studied proteins, triosephosphate isomerase (TIM), 3-phosphoglycerate kinase (PGK), HIV-1 protease (PR) and HIV-1 reverse transcriptase (RT), which provide extensive ensembles of experimental structures for benchmarking and comparing the methods. We show that a rigorous multi-faceted comparison and multiple metrics are necessary to properly assess the differences between conformational ensembles and provide an optimal protocol for achieving good agreement with experimental data. While all four hybrid methods perform well in general, being especially useful as computationally efficient methods that retain atomic resolution, the systematic analysis of the same systems by these four hybrid methods highlights the strengths and limitations of the methods and provides guidance for parameters and protocols to be adopted in future studies.

8.
Nat Chem Biol ; 18(3): 272-280, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34949836

RESUMO

Class B G protein-coupled receptors (GPCRs) are notoriously difficult to target by small molecules because their large orthosteric peptide-binding pocket embedded deep within the transmembrane domain limits the identification and development of nonpeptide small molecule ligands. Using the parathyroid hormone type 1 receptor (PTHR) as a prototypic class B GPCR target, and a combination of molecular dynamics simulations and elastic network model-based methods, we demonstrate that PTHR druggability can be effectively addressed. Here we found a key mechanical site that modulates the collective dynamics of the receptor and used this ensemble of PTHR conformers to identify selective small molecules with strong negative allosteric and biased properties for PTHR signaling in cell and PTH actions in vivo. This study provides a computational pipeline to detect precise druggable sites and identify allosteric modulators of PTHR signaling that could be extended to GPCRs to expedite discoveries of small molecules as novel therapeutic candidates.


Assuntos
Receptor Tipo 1 de Hormônio Paratireóideo , Receptores Acoplados a Proteínas G , Ligantes , Simulação de Dinâmica Molecular , Transdução de Sinais
9.
Bioinformatics ; 37(21): 3956-3958, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34240100

RESUMO

SUMMARY: Efficient sampling of conformational space is essential for elucidating functional/allosteric mechanisms of proteins and generating ensembles of conformers for docking applications. However, unbiased sampling is still a challenge especially for highly flexible and/or large systems. To address this challenge, we describe a new implementation of our computationally efficient algorithm ClustENMD that is integrated with ProDy and OpenMM softwares. This hybrid method performs iterative cycles of conformer generation using elastic network model for deformations along global modes, followed by clustering and short molecular dynamics simulations. ProDy framework enables full automation and analysis of generated conformers and visualization of their distributions in the essential subspace. AVAILABILITY AND IMPLEMENTATION: ClustENMD is open-source and freely available under MIT License from https://github.com/prody/ProDy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas , Software , Proteínas/metabolismo , Conformação Proteica , Algoritmos , Simulação de Dinâmica Molecular
11.
Bioinformatics ; 37(20): 3657-3659, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33822884

RESUMO

SUMMARY: ProDy, an integrated application programming interface developed for modelling and analysing protein dynamics, has significantly evolved in recent years in response to the growing data and needs of the computational biology community. We present major developments that led to ProDy 2.0: (i) improved interfacing with databases and parsing new file formats, (ii) SignDy for signature dynamics of protein families, (iii) CryoDy for collective dynamics of supramolecular systems using cryo-EM density maps and (iv) essential site scanning analysis for identifying sites essential to modulating global dynamics. AVAILABILITY AND IMPLEMENTATION: ProDy is open-source and freely available under MIT License from https://github.com/prody/ProDy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

12.
Comput Struct Biotechnol J ; 18: 1577-1586, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637054

RESUMO

Despite the wealth of methods developed for exploring the molecular basis of allostery in biomolecular systems, there is still a need for structure-based predictive tools that can efficiently detect susceptible sites for triggering allosteric responses. Toward this goal, we introduce here an elastic network model (ENM)-based method, Essential Site Scanning Analysis (ESSA). Essential sites are here defined as residues that would significantly alter the protein's global dynamics if bound to a ligand. To mimic the crowding induced upon substrate binding, the heavy atoms of each residue are incorporated as additional network nodes into the α-carbon-based ENM, and the resulting shifts in soft mode frequencies are used as a metric for evaluating the essentiality of each residue. Results on a dataset of monomeric proteins indicate the enrichment of allosteric and orthosteric binding sites, as well as global hinge regions among essential residues, highlighting the significant role of these sites in controlling the overall structural dynamics. Further integration of ESSA with information on predicted pockets and their local hydrophobicity density enables successful predictions of allosteric pockets for both ligand-bound and -unbound structures. ESSA can be efficiently applied to large multimeric systems. Three case studies, namely (i) G-protein binding to a GPCR, (ii) heterotrimeric assembly of the Ser/Thr protein phosphatase PP2A, and (iii) allo-targeting of AMPA receptor, demonstrate the utility of ESSA for identifying essential sites and narrowing down target allosteric sites identified by druggability simulations.

13.
Nat Chem Biol ; 16(10): 1096-1104, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32632293

RESUMO

Peptide ligands of class B G-protein-coupled receptors act via a two-step binding process, but the essential mechanisms that link their extracellular binding to intracellular receptor-arrestin interactions are not fully understood. Using NMR, crosslinking coupled to mass spectrometry, signaling experiments and computational approaches on the parathyroid hormone (PTH) type 1 receptor (PTHR), we show that initial binding of the PTH C-terminal part constrains the conformation of the flexible PTH N-terminal signaling epitope before a second binding event occurs. A 'hot-spot' PTH residue, His9, that inserts into the PTHR transmembrane domain at this second step allosterically engages receptor-arrestin coupling. A conformational change in PTHR intracellular loop 3 permits favorable interactions with ß-arrestin's finger loop. These results unveil structural determinants for PTHR-arrestin complex formation and reveal that the two-step binding mechanism proceeds via cooperative fluctuations between ligand and receptor, which extend to other class B G-protein-coupled receptors.


Assuntos
Arrestina/metabolismo , Hormônio Paratireóideo/metabolismo , Arrestina/química , Fosfatos de Cálcio , Microscopia Crioeletrônica , AMP Cíclico , Escherichia coli , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Hormônio Paratireóideo/química , Receptores Acoplados a Proteínas G
14.
Curr Opin Struct Biol ; 64: 34-41, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32622329

RESUMO

With the explosion of normal mode analyses (NMAs) based on elastic network models (ENMs) in the last decade, and the proven precision of MD simulations for visualizing interactions at atomic scale, many hybrid methods have been proposed in recent years. These aim at exploiting the best of both worlds: the atomic precision of MD that often fall short of exploring time and length scales of biological interest, and the capability of ENM-NMA to predict the cooperative and often functional rearrangements of large structures and assemblies, albeit at low resolution. We present an overview of recent progress in the field with examples of successful applications highlighting the utility of such hybrid methods and pointing to emerging future directions guided by advances in experimental characterization of biomolecular systems structure and dynamics.

15.
Biophys J ; 118(7): 1782-1794, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32130874

RESUMO

Toroidal proteins serve as molecular machines and play crucial roles in biological processes such as DNA replication and RNA transcription. Despite progress in the structural characterization of several toroidal proteins, we still lack a mechanistic understanding of the significance of their architecture, oligomerization states, and intermolecular interactions in defining their biological function. In this work, we analyze the collective dynamics of toroidal proteins with different oligomerization states, namely, dimeric and trimeric DNA sliding clamps, nucleocapsid proteins (4-, 5-, and 6-mers) and Trp RNA-binding attenuation proteins (11- and 12-mers). We observe common global modes, among which cooperative rolling stands out as a mechanism enabling DNA processivity, and clamshell motions as those underlying the opening/closure of the sliding clamps. Alterations in global dynamics due to complexation with DNA or the clamp loader are shown to assist in enhancing motions to enable robust function. The analysis provides new insights into the differentiation and enhancement of functional motions upon intersubunit and intermolecular interactions.


Assuntos
Replicação do DNA , DNA , Proteínas de Ligação a DNA/metabolismo , Ligantes
16.
Curr Opin Struct Biol ; 62: 14-21, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31785465

RESUMO

Allosteric behavior is central to the function of many proteins, enabling molecular machinery, metabolism, signaling and regulation. Recent years have shown that the intrinsic dynamics of allosteric proteins defined by their 3-dimensional architecture or by the topology of inter-residue contacts favors cooperative motions that bear close similarity to structural changes they undergo during their allosteric actions. These conformational motions are usually driven by energetically favorable or soft modes at the low frequency end of the mode spectrum, and they are evolutionarily conserved among orthologs. These observations brought into light evolutionary adaptation mechanisms that help maintain, optimize or regulate allosteric behavior as the evolution from bacterial to higher organisms introduces sequential heterogeneities and structural complexities.


Assuntos
Proteínas/química , Regulação Alostérica , Bactérias/metabolismo , Eucariotos/metabolismo , Evolução Molecular , Ligação Proteica , Conformação Proteica , Transdução de Sinais
17.
J Chem Inf Model ; 59(5): 2352-2358, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30912658

RESUMO

This study focuses on how the low-frequency end of the vibrational spectrum related to the functional motions changes as a protein binds to a small ligand(s). Our recently proposed residue-specific (RESPEC) elastic network model provides a natural laboratory for this aim due to its systematic mixed coarse-graining approach and parametrization. Current analysis on a large data set of protein-ligand complexes reveals a universal curve enclosing the frequency distributions, which bears the features of previous computational and experimental studies. We mostly observe positive frequency shifts in the collective modes of the protein upon ligand binding. This observation, conforming to the Rayleigh-Courant-Fisher theorem, points to a constraining effect imposed by ligands on protein dynamics, which may be accompanied by a negative vibrational entropy difference. Positive frequency shifts in the global modes can thus be linked to the harmonic well getting steeper, because of interactions with the ligand(s).


Assuntos
Simulação de Dinâmica Molecular , Proteínas/metabolismo , Entropia , Ligantes , Ligação Proteica
18.
Chem Biol Drug Des ; 93(5): 883-899, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30637937

RESUMO

This study investigates the structural distinctiveness of orthosteric ligand-binding sites of several human ß2 adrenergic receptor (ß2 -AR) conformations that have been obtained from a set of independent molecular dynamics (MD) simulations in the presence of intracellular loop 3 (ICL3). A docking protocol was established in order to classify each receptor conformation via its binding affinity to selected ligands with known efficacy. This work's main goal was to reveal many subtle features of the ligand-binding site, presenting alternative conformations, which might be considered as either active- or inactive-like but mostly specific for that ligand. Agonists, inverse agonists, and antagonists were docked to each MD conformer with distinct binding pockets, using different docking tools and scoring functions. Mostly favored receptor conformation persistently observed in all docking/scoring evaluations was classified as active or inactive based on the type of ligand's biological effect. Classified MD conformers were further tested for their ability to discriminate agonists from inverse agonists/antagonists, and several conformers were proposed as important targets to be used in virtual screening experiments that were often limited to a single X-ray structure.


Assuntos
Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/química , Antagonistas de Receptores Adrenérgicos beta 2/metabolismo , Área Sob a Curva , Sítios de Ligação , Análise por Conglomerados , Cristalografia por Raios X , Agonismo Inverso de Drogas , Humanos , Estrutura Terciária de Proteína , Curva ROC , Receptores Adrenérgicos beta 2/metabolismo
19.
J Phys Chem B ; 122(21): 5347-5355, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29268615

RESUMO

RESPEC is a new framework that introduces residue specificity into elastic network modeling (ENM) to successfully render intact protein-ligand complexes as well as apo proteins. This framework establishes a broader application of coarse-graining idea via describing (i) a coarse-grained residue/node through its heavy atoms as virtual nodes, (ii) an effective B-factor for such a node, directly obtained from the experimental data, and (iii) a node-node interaction by a cumulative distance-dependent force constant. RESPEC improves the level of correlations with B-factors after optimizing the parameters of the model. In the absence of ligands, the mean correlations exceed 0.72, which is higher than the classical ENM results, based on a diverse set of proteins. Global modes satisfactorily describe the conformational transitions for apo structures. When the ligands are included at atomistic resolution in RESPEC calculations, mean correlation values exceed 0.9 over the same data set.


Assuntos
Ligantes , Modelos Moleculares , Proteínas/química , Algoritmos , Apoproteínas/química , Apoproteínas/metabolismo , Conformação Proteica , Proteínas/metabolismo
20.
PLoS One ; 12(4): e0176262, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28437479

RESUMO

The chaperone trigger factor (TF) binds to the ribosome exit tunnel and helps cotranslational folding of nascent chains (NC) in bacterial cells and chloroplasts. In this study, we aim to investigate the functional dynamics of fully-atomistic apo TF and its complex with 50S. As TF accomodates a high percentage of charged residues on its surface, the effect of ionic strength on TF dynamics is assessed here by performing five independent molecular dynamics (MD) simulations (total of 1.3 micro-second duration) at 29 mM and 150 mM ionic strengths. At both concentrations, TF exhibits high inter- and intra-domain flexibility related to its binding (BD), core (CD), and head (HD) domains. Even though large oscillations in gyration radius exist during each run, we do not detect the so-called 'fully collapsed' state with both HD and BD collapsed upon the core. In fact, the extended conformers with relatively open HD and BD are highly populated at the physiological concentration of 150 mM. More importantly, extended TF snapshots stand out in terms of favorable docking onto the 50S subunit. Elastic network modeling (ENM) indicates significant changes in TF's functional dynamics and domain decomposition depending on its conformation and positioning on the 50S. The most dominant slow motions are the lateral sweeping and vertical opening/closing of HD relative to 50S. Finally, our ENM-based efficient technique -ClustENM- is used to sample atomistic conformers starting with an extended TF-50S complex. Specifically, BD and CD motions are restricted near the tunnel exit, while HD is highly mobile. The atomistic conformers generated without an NC are in agreement with the cryo-EM maps available for TF-ribosome-NC complex.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Ribossomos/metabolismo , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...