Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38137341

RESUMO

This study investigates the effects of fish oil supplementation during the periconceptional period in male mice. Specifically, it examines the impact of fish oil on intergenerational health, as determined by skeletal muscle markers. To mimic paternal obesity, thirty mice were separated into three groups with distinct dietary regimes for 10 weeks: a high-fat diet (HF), a high-fat diet supplemented with fish oil (FO), and a low-fat diet (LF). Then, these mice mated with control female mice. Dams and offspring consumed a chow diet during gestation and lactation, and the offspring continued on a chow diet. To study short-term (8 weeks) and long-term (16 weeks) effects of FO, skeletal muscle was isolated at the time of sacrifice, and gene analyses were performed. Results suggest that offspring born to FO-supplemented sires exhibited a significant, short-term upregulation of genes associated with insulin signaling, fatty acid oxidation, and skeletal muscle growth with significant downregulation of genes involved in fatty acid synthesis at 8 weeks. Prominent differences in the above markers were observed at 8 weeks compared to 16 weeks. These findings suggest the potential benefits of FO supplementation for fathers during the periconceptional period in reducing the health risks of offspring due to paternal obesity.

2.
PLoS Biol ; 21(6): e3002136, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37289846

RESUMO

Meiotic drive loci distort the normally equal segregation of alleles, which benefits their own transmission even in the face of severe fitness costs to their host organism. However, relatively little is known about the molecular identity of meiotic drivers, their strategies of action, and mechanisms that can suppress their activity. Here, we present data from the fruitfly Drosophila simulans that address these questions. We show that a family of de novo, protamine-derived X-linked selfish genes (the Dox gene family) is silenced by a pair of newly emerged hairpin RNA (hpRNA) small interfering RNA (siRNA)-class loci, Nmy and Tmy. In the w[XD1] genetic background, knockout of nmy derepresses Dox and MDox in testes and depletes male progeny, whereas knockout of tmy causes misexpression of PDox genes and renders males sterile. Importantly, genetic interactions between nmy and tmy mutant alleles reveal that Tmy also specifically maintains male progeny for normal sex ratio. We show the Dox loci are functionally polymorphic within D. simulans, such that both nmy-associated sex ratio bias and tmy-associated sterility can be rescued by wild-type X chromosomes bearing natural deletions in different Dox family genes. Finally, using tagged transgenes of Dox and PDox2, we provide the first experimental evidence Dox family genes encode proteins that are strongly derepressed in cognate hpRNA mutants. Altogether, these studies support a model in which protamine-derived drivers and hpRNA suppressors drive repeated cycles of sex chromosome conflict and resolution that shape genome evolution and the genetic control of male gametogenesis.


Assuntos
Drosophila simulans , Cromossomos Sexuais , Animais , Masculino , Drosophila simulans/genética , Cromossomos Sexuais/genética , Drosophila/genética , Cromossomo X , RNA Interferente Pequeno/genética , Razão de Masculinidade , Meiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...