Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 4(5): e1034, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717581

RESUMO

Scanning electron microscopy (SEM) remains distinct in its ability to allow topographical visualization of structures. Key elements to consider for successful examination of biological specimens include appropriate preparative and imaging techniques. Chemical processing induces structural artifacts during specimen preparation, and several factors need to be considered when selecting fixation protocols to reduce these effects while retaining structures of interest. Particular care for proper dehydration of specimens is essential to minimize shrinkage and is necessary for placement under the high-vacuum environment required for routine operation of standard SEMs. Choice of substrate for mounting and coating specimens can reduce artifacts known as charging, and a basic understanding of microscope settings can optimize parameters to achieve desired results. This article describes fundamental techniques and tips for routine specimen preparation for a variety of biological specimens, preservation of labile or fragile structures, immune-labeling strategies, and microscope imaging parameters for optimal examination by SEM. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Chemical preparative techniques for preservation of biological specimens for examination by SEM Alternate Protocol 1: Practical considerations for the preparation of soft tissues Alternate Protocol 2: Removal of debris from the exoskeleton of invertebrates Alternate Protocol 3: Fixation of colonies grown on agar plates Alternate Protocol 4: Stabilization of polysaccharide structures with alcian blue and lysine Alternate Protocol 5: Preparation of non-adherent particulates in solution for SEM Support Protocol 1: Application of thin layer of adhesive on substrate to improve adherence Support Protocol 2: Poly-L-lysine coating specimen substrates for improved adherence Support Protocol 3: Microwave processing of biological specimens for examination by SEM Basic Protocol 2: Critical point drying of specimens Alternate Protocol 6: Chemical alternative to critical point drying Basic Protocol 3: Sputter coating Alternate Protocol 7: Improved bulk conductivity through "OTOTO" Basic Protocol 4: Immune-labeling strategies Alternate Protocol 8: Immune-labeling internal antigens with small gold probes Alternate protocol 9: Quantum dot or fluoronanogold preparations for correlative techniques Basic Protocol 5: Exposure of internal structures by mechanical fracturing Basic Protocol 6: Exposure of internal structures of tissues by fracturing with liquid nitrogen Basic Protocol 7: Anaglyph production from stereo pairs to produce 3D images.


Assuntos
Microscopia Eletrônica de Varredura , Manejo de Espécimes , Microscopia Eletrônica de Varredura/métodos , Manejo de Espécimes/métodos , Animais
2.
iScience ; 26(12): 108490, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38144450

RESUMO

Next-generation SARS-CoV-2 vaccines are needed that induce systemic and mucosal immunity. Murine pneumonia virus (MPV), a murine homolog of respiratory syncytial virus, is attenuated by host-range restriction in nonhuman primates and has a tropism for the respiratory tract. We generated MPV vectors expressing the wild-type SARS-CoV-2 spike protein (MPV/S) or its prefusion-stabilized form (MPV/S-2P). Both vectors replicated similarly in cell culture and stably expressed S. However, only S-2P was associated with MPV particles. After intranasal/intratracheal immunization of rhesus macaques, MPV/S and MPV/S-2P replicated to low levels in the airways. Despite its low-level replication, MPV/S-2P induced high levels of mucosal and serum IgG and IgA to SARS-CoV-2 S or its receptor-binding domain. Serum antibodies from MPV/S-2P-immunized animals efficiently inhibited ACE2 receptor binding to S proteins of variants of concern. Based on its attenuation and immunogenicity in macaques, MPV/S-2P will be further evaluated as a live-attenuated vaccine for intranasal immunization against SARS-CoV-2.

3.
iScience ; 26(8): 107323, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37529105

RESUMO

Lymphocyte depletion is a distinctive feature of Ebola virus (EBOV) disease. The ectodomain of EBOV glycoprotein (GP) is cleaved off the surface of infected cells into circulation as shed GP. To test the hypothesis that shed GP induces lymphocyte death, we cultured primary human B, NK, or T cells with shed GP in vitro. We found that shed GP dependably decreased B, NK, and T cell viability across donors. B and NK cells exhibited higher susceptibility than T cells. Continuous monitoring revealed shed GP began to kill B and NK cells by 4 h and T cells by 5 h. We also demonstrated that shed GP-induced lymphocyte death can be both caspase dependent and caspase independent. Our data are evidence that the cytotoxic effect of shed GP on lymphocytes may contribute to EBOV disease and highlight the need for further research to clarify mechanisms of shed GP-induced death.

4.
Nat Commun ; 14(1): 198, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639656

RESUMO

The alternative sigma factor RpoS plays a central role in the critical host-adaptive response of the Lyme disease spirochete, Borrelia burgdorferi. We previously identified bbd18 as a negative regulator of RpoS but could not inactivate bbd18 in wild-type spirochetes. In the current study we employed an inducible bbd18 gene to demonstrate the essential nature of BBD18 for viability of wild-type spirochetes in vitro and at a unique point in vivo. Transcriptomic analyses of BBD18-depleted cells demonstrated global induction of RpoS-dependent genes prior to lysis, with the absolute requirement for BBD18, both in vitro and in vivo, circumvented by deletion of rpoS. The increased expression of plasmid prophage genes and the presence of phage particles in the supernatants of lysing cultures indicate that RpoS regulates phage lysis-lysogeny decisions. Through this work we identify a mechanistic link between endogenous prophages and the RpoS-dependent adaptive response of the Lyme disease spirochete.


Assuntos
Borrelia burgdorferi , Prófagos , Carrapatos , Animais , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/virologia , Regulação Bacteriana da Expressão Gênica , Prófagos/genética , Fator sigma/metabolismo , Carrapatos/microbiologia , Fatores de Virulência/metabolismo , Interações Hospedeiro-Patógeno
5.
NPJ Vaccines ; 7(1): 72, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764659

RESUMO

Current vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are administered parenterally and appear to be more protective in the lower versus the upper respiratory tract. Vaccines are needed that directly stimulate immunity in the respiratory tract, as well as systemic immunity. We used avian paramyxovirus type 3 (APMV3) as an intranasal vaccine vector to express the SARS-CoV-2 spike (S) protein. A lack of pre-existing immunity in humans and attenuation by host-range restriction make APMV3 a vector of interest. The SARS-CoV-2 S protein was stabilized in its prefusion conformation by six proline substitutions (S-6P) rather than the two that are used in most vaccine candidates, providing increased stability. APMV3 expressing S-6P (APMV3/S-6P) replicated to high titers in embryonated chicken eggs and was genetically stable, whereas APMV3 expressing non-stabilized S or S-2P were unstable. In hamsters, a single intranasal dose of APMV3/S-6P induced strong serum IgG and IgA responses to the S protein and its receptor-binding domain, and strong serum neutralizing antibody responses to SARS-CoV-2 isolate WA1/2020 (lineage A). Sera from APMV3/S-6P-immunized hamsters also efficiently neutralized Alpha and Beta variants of concern. Immunized hamsters challenged with WA1/2020 did not exhibit the weight loss and lung inflammation observed in empty-vector-immunized controls; SARS-CoV-2 replication in the upper and lower respiratory tract of immunized animals was low or undetectable compared to the substantial replication in controls. Thus, a single intranasal dose of APMV3/S-6P was highly immunogenic and protective against SARS-CoV-2 challenge, suggesting that APMV3/S-6P is suitable for clinical development.

6.
Am J Trop Med Hyg ; 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35226872

RESUMO

Monocyte dysfunction in helminth infection is one of the mechanisms proposed to explain the diminished parasite antigen-specific T cell responses seen with patent filarial infection. In fact, monocytes from filariae-infected individuals demonstrate internalized filarial antigens and, as a consequence, express inhibitory surface molecules and have diminished cytokine production. To investigate the mechanisms underlying monocyte dysfunction in filarial infections, purified human monocytes were exposed to live microfilariae (mf) of Brugia malayi, and the mRNA and protein expression of important inhibitory and/or autophagy-related molecules were assessed. Our data indicate that mf-induced autophagy in human monocytes shown by the formation of autophagic vesicles, by the upregulation in the mRNA expression of autophagy-related genes BCN1, LC3B, ATG5, ATG7 (P < 0.05), and by increase in the levels of LC3B protein. Furthermore, this mf-induced autophagy increased the levels of monocyte CD206 expression. In addition, mf significantly induced the frequency of interferon (IFN)-γ+ human monocytes and at the same time induced the mRNA expression of indoleamine 2,3-dioxygenase (IDO) through an IFN-γ-dependent mechanism; significantly enhanced tryptophan degradation (an indicator of IDO activity; P < 0.005). Interestingly, this autophagy induction by mf in monocytes was IFN-γ-dependent but IDO-independent as was reversed by anti-IFN-γ but not by an IDO inhibitor. Our data collectively suggest that mf of Brugia malayi regulate the function of monocytes by induction of IDO and IFN-γ, induce autophagy through an IFN-γ-dependent mechanism, and increase M2 phenotype through induction of autophagy; all acting in concert to drive monocyte dysfunction.

7.
mBio ; 13(1): e0244121, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35038902

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes infections in a variety of settings. Many P. aeruginosa isolates are infected by filamentous Pf bacteriophage integrated into the bacterial chromosome as a prophage. Pf virions can be produced without lysing P. aeruginosa. However, cell lysis can occur during superinfection, which occurs when Pf virions successfully infect a host lysogenized by a Pf prophage. Temperate phages typically encode superinfection exclusion mechanisms to prevent host lysis by virions of the same or similar species. In this study, we sought to elucidate the superinfection exclusion mechanism of Pf phage. Initially, we observed that P. aeruginosa that survive Pf superinfection are transiently resistant to Pf-induced plaquing and are deficient in twitching motility, which is mediated by type IV pili (T4P). Pf utilize T4P as a cell surface receptor, suggesting that T4P are suppressed in bacteria that survive superinfection. We tested the hypothesis that a Pf-encoded protein suppresses T4P to mediate superinfection exclusion by expressing Pf proteins in P. aeruginosa and measuring plaquing and twitching motility. We found that the Pf protein PA0721, which we termed Pf superinfection exclusion (PfsE), promoted resistance to Pf infection and suppressed twitching motility by binding the T4P protein PilC. Because T4P play key roles in biofilm formation and virulence, the ability of Pf phage to modulate T4P via PfsE has implications in the ability of P. aeruginosa to persist at sites of infection. IMPORTANCE Pf bacteriophage (phage) are filamentous viruses that infect Pseudomonas aeruginosa and enhance its virulence potential. Pf virions can lyse and kill P. aeruginosa through superinfection, which occurs when an already infected cell is infected by the same or similar phage. Here, we show that a small, highly conserved Pf phage protein (PA0721, PfsE) provides resistance to superinfection by phages that use the type IV pilus as a cell surface receptor. PfsE does this by inhibiting assembly of the type IV pilus via an interaction with PilC. As the type IV pilus plays important roles in virulence, the ability of Pf phage to modulate its assembly has implications for P. aeruginosa pathogenesis.


Assuntos
Inovirus , Superinfecção , Humanos , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/metabolismo , Inovirus/metabolismo , Fímbrias Bacterianas/genética
8.
Emerg Microbes Infect ; 10(1): 1378-1389, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34162308

RESUMO

The vector-borne flaviviruses (VBFVs) are well known for causing great misery and death in humans worldwide. The VBFVs include those transmitted by mosquitos, such as Zika virus (ZIKV), dengue virus; and those transmitted by ticks including the tick-borne flavivirus serocomplex and Powassan virus (POWV). Two of our recent reports showed that intracranial POWV infection in the reservoir host, Peromyscus leucopus, was restricted and caused no overt clinical disease. Several modes of analyses suggested activation of the LXR pathway. Activation of the LXR pathway leads to increased efflux of cholesterol from cells and consequent disturbances in membrane biogenesis. Because VBFV replication is dependent on membrane biogenesis, we evaluated the effect of an LXR agonist (LXR623) on POWV and ZIKV infection and observed that the compound impaired permissive replication of both viruses in a human neuroblastoma SK-N-SH cell line. The LXR agonist resulted in failure of the viruses to induce ER expansion and elaborate vesicle formation, suggesting that the efflux of cholesterol was part of the antiviral mechanism. We also observed that the LXR agonist contributed to the mechanism of virus suppression by increased expression of mRNAs encoding for the antiviral cytokines CXCL10, RANTES and IFN1ß. In sharp contrast, a LXR antagonist (GSK2033) had no significant effect on VBFV replication. We conclude that LXR623 impairs flavivirus replication by stimulating cellular antiviral factors.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Indazóis/farmacologia , Receptores X do Fígado/agonistas , Zika virus/efeitos dos fármacos , Antivirais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Efeito Citopatogênico Viral/efeitos dos fármacos , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Receptores X do Fígado/metabolismo , Replicação Viral/efeitos dos fármacos , Zika virus/fisiologia
9.
PLoS Negl Trop Dis ; 15(1): e0008884, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411714

RESUMO

We have previously shown that the microfilarial (mf) stage of Brugia malayi can inhibit the mammalian target of rapamycin (mTOR; a conserved serine/threonine kinase critical for immune regulation and cellular growth) in human dendritic cells (DC) and we have proposed that this mTOR inhibition is associated with the DC dysfunction seen in filarial infections. Extracellular vesicles (EVs) contain many proteins and nucleic acids including microRNAs (miRNAs) that might affect a variety of intracellular pathways. Thus, EVs secreted from mf may elucidate the mechanism by which the parasite is able to modulate the host immune response during infection. EVs, purified from mf of Brugia malayi and confirmed by size through nanoparticle tracking analysis, were assessed by miRNA microarrays (accession number GSE157226) and shown to be enriched (>2-fold, p-value<0.05, FDR = 0.05) for miR100, miR71, miR34, and miR7. The microarray analysis compared mf-derived EVs and mf supernatant. After confirming their presence in EVs using qPCR for these miRNA targets, web-based target predictions (using MIRPathv3, TarBAse and MicroT-CD) predicted that miR100 targeted mTOR and its downstream regulatory protein 4E-BP1. Our previous data with live parasites demonstrated that mf downregulate the phosphorylation of mTOR and its downstream effectors. Additionally, our proteomic analysis of the mf-derived EVs revealed the presence of proteins commonly found in these vesicles (data are available via ProteomeXchange with identifier PXD021844). We confirmed internalization of mf-derived EVs by human DCs and monocytes using confocal microscopy and flow cytometry, and further demonstrated through flow cytometry, that mf-derived EVs downregulate the phosphorylation of mTOR in human monocytes (THP-1 cells) to the same degree that rapamycin (a known mTOR inhibitor) does. Our data collectively suggest that mf release EVs that interact with host cells, such as DC, to modulate host responses.


Assuntos
Brugia Malayi/metabolismo , Regulação para Baixo , Vesículas Extracelulares/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Brugia Malayi/imunologia , Proteínas de Ciclo Celular/metabolismo , Células Dendríticas/imunologia , Filariose/imunologia , Humanos , MicroRNAs/metabolismo , Microfilárias/imunologia , Monócitos/metabolismo , Fosforilação , Proteômica , Células THP-1 , Serina-Treonina Quinases TOR/genética
10.
Proc Natl Acad Sci U S A ; 117(1): 522-531, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871169

RESUMO

Interleukin 15 (IL-15) is an essential cytokine for the survival and proliferation of natural killer (NK) cells. IL-15 activates signaling by the ß and common γ (γc) chain heterodimer of the IL-2 receptor through trans-presentation by cells expressing IL-15 bound to the α chain of the IL-15 receptor (IL-15Rα). We show here that membrane-associated IL-15Rα-IL-15 complexes are transferred from presenting cells to NK cells through trans-endocytosis and contribute to the phosphorylation of ribosomal protein S6 and NK cell proliferation. NK cell interaction with soluble or surface-bound IL-15Rα-IL-15 complex resulted in Stat5 phosphorylation and NK cell survival at a concentration or density of the complex much lower than required to stimulate S6 phosphorylation. Despite this efficient response, Stat5 phosphorylation was reduced after inhibition of metalloprotease-induced IL-15Rα-IL-15 shedding from trans-presenting cells, whereas S6 phosphorylation was unaffected. Conversely, inhibition of trans-endocytosis by silencing of the small GTPase TC21 or expression of a dominant-negative TC21 reduced S6 phosphorylation but not Stat5 phosphorylation. Thus, trans-endocytosis of membrane-associated IL-15Rα-IL-15 provides a mode of regulating NK cells that is not afforded to IL-2 and is distinct from activation by soluble IL-15. These results may explain the strict IL-15 dependence of NK cells and illustrate how the cellular compartment in which receptor-ligand interaction occurs can influence functional outcome.


Assuntos
Proliferação de Células , Células Dendríticas/metabolismo , Subunidade alfa de Receptor de Interleucina-15/metabolismo , Interleucina-15/metabolismo , Células Matadoras Naturais/fisiologia , Comunicação Celular/fisiologia , Linhagem Celular , Endocitose/fisiologia , Voluntários Saudáveis , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosforilação/fisiologia , Cultura Primária de Células , Proteína S6 Ribossômica/metabolismo
11.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651356

RESUMO

Human respiratory syncytial virus (RSV) is a major pediatric respiratory pathogen. The attachment (G) and fusion (F) glycoproteins are major neutralization and protective antigens. RSV G is expressed as membrane-anchored (mG) and -secreted (sG) forms, both containing a central fractalkine-like CX3C motif. The CX3C motif and sG are thought to interfere with host immune responses and have been suggested to be omitted from a vaccine. We used a chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) vector to express RSV wild-type (wt) G and modified forms, including sG alone, mG alone, mutants with ablated CX3C, and G with enhanced packaging into vector virions. In hamsters, these viruses replicated to similar titers. When assayed with a complement-enhanced neutralization assay in Vero cells, sG did not reduce the serum RSV- or PIV3-neutralizing antibody (NAb) responses, whereas ablating CX3C drastically reduced the RSV NAb response. Protective efficacy against RSV challenge was not reduced by sG but was strongly dependent on the CX3C motif. In ciliated human airway epithelial (HAE) cells, NAbs induced by wt G, but not by wt F, completely blocked RSV infection in the absence of added complement. This activity was dependent on the integrity of the CX3C motif. In hamsters, the rB/HPIV3 expressing wt G conferred better protection against RSV challenge than that expressing wt F. Codon optimization of the wt G further increased its immunogenicity and protective efficacy. This study showed that ablation of the CX3C motif or sG in an RSV vaccine, as has been suggested previously, would be ill advised.IMPORTANCE Human RSV is the leading viral cause of severe pediatric respiratory illness. An RSV vaccine is not yet available. The RSV attachment protein G is an important protective and neutralization antigen. G contains a conserved fractalkine-like CX3C motif and is expressed in mG and sG forms. sG and the CX3C motif are thought to interfere with host immune responses, but this remains poorly characterized. Here, we used an attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) vector to express various modified forms of RSV G. We demonstrated that strong antibody and protective responses could be induced by G alone, and that this was highly dependent on the integrity of the CX3C motif. There was no evidence that sG or the CX3C motif impaired immune responses against RSV G or the rB/HPIV3 vector. rB/HPIV3 expressing wt RSV G provides a bivalent vaccine against RSV and HPIV3.


Assuntos
Vetores Genéticos/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Respirovirus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Bovinos , Criança , Chlorocebus aethiops , Feminino , Humanos , Macaca mulatta , Mesocricetus , Infecções por Vírus Respiratório Sincicial/virologia , Células Vero , Proteínas Virais de Fusão/imunologia , Vírion/imunologia , Replicação Viral/imunologia
12.
Nat Immunol ; 20(2): 218-231, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643268

RESUMO

Regulatory T cells (Treg cells) can activate multiple suppressive mechanisms in vitro after activation via the T cell antigen receptor, resulting in antigen-independent suppression. However, it remains unclear whether similar pathways operate in vivo. Here we found that antigen-specific Treg cells activated by dendritic cells (DCs) pulsed with two antigens suppressed conventional naive T cells (Tnaive cells) specific for both cognate antigens and non-cognate antigens in vitro but suppressed only Tnaive cells specific for cognate antigen in vivo. Antigen-specific Treg cells formed strong interactions with DCs, resulting in selective inhibition of the binding of Tnaive cells to cognate antigen yet allowing bystander Tnaive cell access. Strong binding resulted in the removal of the complex of cognate peptide and major histocompatibility complex class II (pMHCII) from the DC surface, reducing the capacity of DCs to present antigen. The enhanced binding of Treg cells to DCs, coupled with their capacity to deplete pMHCII, represents a novel pathway for Treg cell-mediated suppression and may be a mechanism by which Treg cells maintain immune homeostasis.


Assuntos
Apresentação de Antígeno/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Tolerância Imunológica/imunologia , Linfócitos T Reguladores/imunologia , Animais , Efeito Espectador/imunologia , Células Cultivadas , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peptídeos/imunologia , Cultura Primária de Células , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo
13.
J Immunol ; 201(10): 2879-2884, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30315139

RESUMO

Early secretion of IL-12 by mouse dendritic cells (DCs) instructs T cells to make IFN-γ. However, only activated, but not naive T cells are able to license DCs for IL-12 production. We hypothesized that it might be due to different levels of CD40L expression on the surface of these cells, as CD40 signals are required for IL-12 production. Using quantitative cell-free systems incorporating CD40L in lipid bilayers combined with total internal reflection fluorescence microscopy and flow cytometry, we show that as low as ∼200 CD40L molecules/µm2 in combination with IL-4 is sufficient to induce IL-12 production by DCs. Remarkably, CD40L alone is adequate to induce IL-23 secretion by DCs. Thus, although activated T cells have somewhat higher levels of CD40L, it is the combination of CD40L and the cytokines they secrete that licenses DCs and influences the effector class of the immune response.


Assuntos
Ligante de CD40/imunologia , Células Dendríticas/imunologia , Interleucina-12/biossíntese , Interleucina-23/biossíntese , Ativação Linfocitária/imunologia , Animais , Células Dendríticas/metabolismo , Interleucina-12/imunologia , Interleucina-23/imunologia , Camundongos , Camundongos Transgênicos
14.
Malar J ; 17(1): 391, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367653

RESUMO

BACKGROUND: Artemisinin-resistant Plasmodium falciparum has been reported throughout the Greater Mekong subregion and threatens to disrupt current malaria control efforts worldwide. Polymorphisms in kelch13 have been associated with clinical and in vitro resistance phenotypes; however, several studies suggest that the genetic determinants of resistance may involve multiple genes. Current proposed mechanisms of resistance conferred by polymorphisms in kelch13 hint at a connection to an autophagy-like pathway in P. falciparum. RESULTS: A SNP in autophagy-related gene 18 (atg18) was associated with long parasite clearance half-life in patients following artemisinin-based combination therapy. This gene encodes PfAtg18, which is shown to be similar to the mammalian/yeast homologue WIPI/Atg18 in terms of structure, binding abilities, and ability to form puncta in response to stress. To investigate the contribution of this polymorphism, the atg18 gene was edited using CRISPR/Cas9 to introduce a T38I mutation into a k13-edited Dd2 parasite. The presence of this SNP confers a fitness advantage by enabling parasites to grow faster in nutrient-limited settings. The mutant and parent parasites were screened against drug libraries of 6349 unique compounds. While the SNP did not modulate the parasite's susceptibility to any of the anti-malarial compounds using a 72-h drug pulse, it did alter the parasite's susceptibility to 227 other compounds. CONCLUSIONS: These results suggest that the atg18 T38I polymorphism may provide additional resistance against artemisinin derivatives, but not partner drugs, even in the absence of kelch13 mutations, and may also be important in parasite survival during nutrient deprivation.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Proteínas Relacionadas à Autofagia/genética , Resistência a Medicamentos , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Proteínas Relacionadas à Autofagia/química , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/química , Alinhamento de Sequência
15.
J Immunol ; 201(11): 3294-3306, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30373851

RESUMO

Activation of CD4+ T cells to proliferate drives cells toward aerobic glycolysis for energy production while using mitochondria primarily for macromolecular synthesis. In addition, the mitochondria of activated T cells increase production of reactive oxygen species, providing an important second messenger for intracellular signaling pathways. To better understand the critical changes in mitochondria that accompany prolonged T cell activation, we carried out an extensive analysis of mitochondrial remodeling using a combination of conventional strategies and a novel high-resolution imaging method. We show that for 4 d following activation, mouse CD4+ T cells sustained their commitment to glycolysis facilitated by increased glucose uptake through increased expression of GLUT transporters. Despite their limited contribution to energy production, mitochondria were active and showed increased reactive oxygen species production. Moreover, prolonged activation of CD4+ T cells led to increases in mitochondrial content and volume, in the number of mitochondria per cell and in mitochondrial biogenesis. Thus, during prolonged activation, CD4+ T cells continue to obtain energy predominantly from glycolysis but also undergo extensive mitochondrial remodeling, resulting in increased mitochondrial activity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Animais , Células Cultivadas , Metabolismo Energético , Feminino , Glicólise , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais
16.
Nat Immunol ; 19(8): 871-884, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988090

RESUMO

B cells are activated by two temporally distinct signals, the first provided by the binding of antigen to the B cell antigen receptor (BCR), and the second provided by helper T cells. Here we found that B cells responded to antigen by rapidly increasing their metabolic activity, including both oxidative phosphorylation and glycolysis. In the absence of a second signal, B cells progressively lost mitochondrial function and glycolytic capacity, which led to apoptosis. Mitochondrial dysfunction was a result of the gradual accumulation of intracellular calcium through calcium response-activated calcium channels that, for approximately 9 h after the binding of B cell antigens, was preventable by either helper T cells or signaling via the receptor TLR9. Thus, BCR signaling seems to activate a metabolic program that imposes a limited time frame during which B cells either receive a second signal and survive or are eliminated.


Assuntos
Linfócitos B/fisiologia , Mitocôndrias/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Receptor Toll-Like 9/metabolismo , Animais , Apoptose , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Citocinas/metabolismo , Glicólise , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células NIH 3T3 , Fosforilação Oxidativa , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais , Receptor Toll-Like 9/genética
17.
Nat Immunol ; 19(3): 255-266, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29476183

RESUMO

Key events in T cell-dependent antibody responses, including affinity maturation, are dependent on the B cell's presentation of antigen to helper T cells at critical checkpoints in germinal-center formation in secondary lymphoid organs. Here we found that signaling via Toll-like receptor 9 (TLR9) blocked the ability of antigen-specific B cells to capture, process and present antigen and to activate antigen-specific helper T cells in vitro. In a mouse model in vivo and in a human clinical trial, the TLR9 agonist CpG enhanced the magnitude of the antibody response to a protein vaccine but failed to promote affinity maturation. Thus, TLR9 signaling might enhance antibody titers at the expense of the ability of B cells to engage in germinal-center events that are highly dependent on B cells' capture and presentation of antigen.


Assuntos
Formação de Anticorpos/imunologia , Apresentação de Antígeno/genética , Ativação Linfocitária/imunologia , Receptor Toll-Like 9/imunologia , Animais , Afinidade de Anticorpos , Centro Germinativo/imunologia , Humanos , Vacinas Antimaláricas , Camundongos , Receptor Toll-Like 9/agonistas
18.
Infect Immun ; 85(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28320834

RESUMO

Granulibacter bethesdensis is a Gram-negative bacterium that infects patients with chronic granulomatous disease (CGD), a primary immunodeficiency marked by a defect in NOX2, the phagocyte NADPH oxidase. Previous studies have shown that NOX2 is essential for killing of G. bethesdensis by neutrophils and monocytes and that the bacteriostatic activity of monocyte-derived macrophages (MDM) requires NOX2 and gamma interferon (IFN-γ) pretreatment. To determine whether G. bethesdensis evades phagolysosomal killing, a host defense pathway intact in both normal and CGD MDM, or whether it occupies a distinct intracellular niche in CGD MDM, we assessed the trafficking patterns of this organism. We observed colocalization of G. bethesdensis with an early endosome antigen 1 (EEA1)-positive compartment, followed by colocalization with lysosome-associated membrane protein 1 (LAMP1)-positive and LysoTracker-positive late phagosomes; these characteristics were similar in both normal and CGD MDM. Despite localization to acidified late phagosomes, viable G. bethesdensis cells were recovered from viable MDM in numbers greater than in the initial input up to 6 days after infection. G. bethesdensis remains, and in some cases appears to divide, within a membrane-bound compartment for the entire 6-day time course. These findings indicate that this organism resists both oxygen-dependent and oxygen-independent phagolysosomal antimicrobial systems of human macrophages.


Assuntos
Acetobacteraceae/patogenicidade , Infecções por Bactérias Gram-Negativas/microbiologia , Doença Granulomatosa Crônica/microbiologia , Macrófagos/microbiologia , Doença Granulomatosa Crônica/complicações , Humanos , Interferon gama/imunologia , Proteínas de Membrana Lisossomal/metabolismo , Macrófagos/ultraestrutura , Glicoproteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Monócitos/microbiologia , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Neutrófilos/microbiologia , Fagocitose , Fagossomos/imunologia , Fagossomos/microbiologia , Proteínas de Transporte Vesicular/metabolismo
19.
Sci Rep ; 7: 41556, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28148964

RESUMO

Cellular prion protein (PrPC) is a mammalian glycoprotein which is usually found anchored to the plasma membrane via a glycophosphatidylinositol (GPI) anchor. PrPC misfolds to a pathogenic isoform PrPSc, the causative agent of neurodegenerative prion diseases. The precise function of PrPC remains elusive but may depend upon its cellular localization. Here we show that PrPC is present in brain mitochondria from 6-12 week old wild-type and transgenic mice in the absence of disease. Mitochondrial PrPC was fully processed with mature N-linked glycans and did not require the GPI anchor for localization. Protease treatment of purified mitochondria suggested that mitochondrial PrPC exists as a transmembrane isoform with the C-terminus facing the mitochondrial matrix and the N-terminus facing the intermembrane space. Taken together, our data suggest that PrPC can be found in mitochondria in the absence of disease, old age, mutation, or overexpression and that PrPC may affect mitochondrial function.


Assuntos
Mitocôndrias/metabolismo , Proteínas PrPC/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Cromatografia Líquida , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glicosilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Polissacarídeos/metabolismo , Proteínas PrPC/química , Doenças Priônicas/metabolismo , Ligação Proteica , Espectrometria de Massas em Tandem
20.
Artigo em Inglês | MEDLINE | ID: mdl-28115349

RESUMO

Klebsiella pneumoniae is a prominent cause of nosocomial infections worldwide. Bloodstream infections caused by carbapenem-resistant K. pneumoniae, including the epidemic lineage known as multilocus sequence type 258 (ST258), are difficult to treat, and the rate of mortality from such infections is high. Thus, it is imperative that we gain a better understanding of host defense against this pathogen as a step toward developing novel therapies. Here we tested the hypothesis that the resistance of ST258 to bactericidal components of human blood, such as serum complement, is linked to virulence capacity in the context of bacteremia. There was significant variance in the survival of ST258 clinical isolates in heparinized human blood or normal human serum. The rate of survival of ST258 isolates in human blood was, in general, similar to that in normal human serum, suggesting a prominent role for complement (rather than leukocytes) in the healthy host defense against ST258 isolates and related organisms. Indeed, deposition of serum complement-the C5b to C9 (C5b-C9) membrane attack complex-onto the surface of ST258 isolates accompanied serum bactericidal activity. Human serum treated with pharmacological inhibitors of complement, depleted of antibody, or heated at 56°C for 30 min had significantly reduced or absent bactericidal activity. In contrast to heparinized blood from humans, that from BALB/c mice lacked bactericidal activity toward the ST258 isolates tested, but the virulence of these ST258 isolates in a mouse bacteremia model was inexplicably limited. Our data highlight the importance of the complement system in host defense against ST258 bacteremia, and we propose that there is the potential to enhance complement-mediated bactericidal activity using an antibody-based approach.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Animais , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Carbapenêmicos/uso terapêutico , Modelos Animais de Doenças , Humanos , Klebsiella pneumoniae/genética , Camundongos , Camundongos Endogâmicos BALB C , Tipagem de Sequências Multilocus , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...