Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Injury ; 54 Suppl 6: 110777, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38143129

RESUMO

The treatment of severe musculoskeletal injuries, such as loss of bone tissue and consolidation disorders, requires bone transplantation, and the success of this bone reconstruction depends on the grafts transplant's osteogenic, osteoconductive, and osteoinductive properties. Although the gold standard is autograft, it is limited by availability, morbidity, and infection risk. Despite their low capacity for osteoinduction and osteogenesis, decellularized bone allografts have been used in the search for alternative therapeutic strategies to improve bone regeneration. Considering that bone marrow stromal cells (BMSCs) are responsible for the maintenance of bone turnover throughout life, we believe that associating BMSCs with allograft could produce a material that is biologically similar to autologous bone graft. For this reason, this study evaluated the osteogenic potential of bone allograft cellularized with BMSCs. First, BMSC was characterized and allograft decellularization was confirmed by histology, scanning electron microscopy, and DNA quantification. Subsequently, the BMSCs and allografts were associated and evaluated for adhesion, proliferation, and in vitro and in vivo osteogenic potential. We demonstrated that, after 2 hours, BMSCs had already adhered to the surface of allografts and remained viable for 14 days. In vitro osteogenic assays indicated increased osteogenic potential of allografts compared with beta-tricalcium phosphate (ß-TCP). In vivo transplantation assays in immunodeficient mice confirmed the allograft's potential to induce bone formation, with significantly better results than ß-TCP. Finally, our results indicate that allograft can provide structural support for BMSC adhesion, offering a favorable microenvironment for cell survival and differentiation and inducing new bone formation. Taken together, our data indicate that this rapid methodology for cellularization of allograft with BMSCs might be a new therapeutic alternative in regenerative medicine and bone bioengineering.


Assuntos
Regeneração Óssea , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Fosfatos de Cálcio/farmacologia , Osteogênese , Diferenciação Celular , Aloenxertos , Células da Medula Óssea
2.
J Biomed Mater Res B Appl Biomater ; 110(11): 2521-2532, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35779044

RESUMO

Prior to clinical use, the corrosion resistance of new prosthesis system must be verified. The fretting-corrosion mechanisms of total hip arthroplasty (THA) implants generate metal debris and ions that can increase the incidence of adverse tissue reactions. For cemented stems, there are at least two interfaces that can be damaged by fretting-corrosion: stem-head and stem-cement. This investigation aimed to evaluate, through in vitro and in silico analyses, fretting-corrosion at the stem-head and stem-cement interfaces, to determine which surface is most affected in pre-clinical testing and identify the causes associated with the observed behavior. Unimodular stems and femoral heads of three different groups were evaluated, defined according to the head/stem material as group I (SS/SS), group II (CoCr/SS), and group III (CoCr/CoCr). Seven pairs of stems and heads per group were tested: three pairs were subjected to material characterization, three pairs to in vitro fretting-corrosion testing, and one pair to geometric modeling in the in silico analysis. The absolute area of the stem body degraded was more than three times higher compared with the trunnion, for all groups. These results were corroborated by the in silico analysis results, which revealed that the average micromotion at the stem-cement interface (9.65-15.66 µm) was higher than that at the stem-head interface (0.55-1.08 µm). In conclusion, the degradation of the stem-cement interface is predominant in the pre-clinical set, indicating the need to consider the fretting-corrosion at the stem-cement interface during pre-clinical implant evaluations.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Artroplastia de Quadril/métodos , Cimentos Ósseos , Simulação por Computador , Corrosão , Materiais Dentários , Cimentos de Ionômeros de Vidro , Humanos , Desenho de Prótese , Falha de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...