Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Dent ; 9(4): 580-586, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26929699

RESUMO

OBJECTIVES: This in vitro study evaluated the antimicrobial effects of commercial toothpastes containing natural compounds. MATERIALS AND METHODS: The study groups were divided based on the natural compound present in the toothpaste composition: Sorbitol (I), tocopherol (II), mint (III), cinnamon/mint (IV), propolis/melaleuca (V), mint/açai (VI), mint/guarana (VII), propolis (VIII), negative control (IX), and the positive control (X). The antimicrobial properties of the toothpastes were tested using the disk diffusion method against oral pathogens: Streptococcus mutans, Pseudomonas aeruginosa, and Enterococcus faecalis. The resulting inhibition halos were measured in millimeters. RESULTS: The data indicated that the bacteria responded differently to the toothpastes (P < 0.0001). The diameters of the inhibition halos against S. mutans were in decreasing order of efficacy: Propolis/melaleuca > mint/guarana > mint/açai > sorbitol > tocopherol > cinnamon/mint > propolis > mint (P < 0.001 vs. negative control). E. faecalis showed variable responses to the dentifrices in the following order of decreasing efficacy: Mint/guarana > propolis > sorbitol > mint/açai > tocopherol > cinnamon/mint > mint = propolis/melaleuca = negative control. The product with the highest antimicrobial activity was mint/guarana, which was significantly different than propolis/melaleuca, mint, cinnamon/mint, and tocopherol and negative control (P < 0.001). The statistical analysis indicated that propolis, sorbitol, and mint/açai did not show any differences compared to mint/guarana (P > 0.05) and positive control (P > 0.05). P. aeruginosa was resistant to all dental gels tested including positive control. CONCLUSION: The toothpastes with natural compounds have therapeutic potential and need more detailed searches for the correct clinic therapeutic application. The results from this study revealed differences in the antimicrobial activities of commercial toothpastes with natural compounds.

2.
Pharmacogn Mag ; 7(26): 165-70, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21716926

RESUMO

BACKGROUND: Ipomoea batatas (L.) Lam., popularly known as sweet potato (SP), has played an important role as an energy and a phytochemical source in human nutrition and animal feeding. Ethnopharmacological data show that SP leaves have been effectively used in herbal medicine to treat inflammatory and/or infectious oral diseases in Brazil. The aim of this research was to evaluate the phytochemical, antioxidant, and antimicrobial activities of the crude leaves' extract of SP leaves. MATERIALS AND METHODS: The screening was performed for triterpenes/steroids, alkaloids, anthraquinones, coumarins, flavonoids, saponins, tannins, and phenolic acids. The color intensity or the precipitate formation was used as analytical responses to these tests. The total antioxidant capacity was evaluated by the phosphomolybdenum complex method. Antimicrobial activity was made by agar disk and agar well diffusion tests. RESULTS: The phytochemical screening showed positive results for triterpenes/steroids, alkaloids, anthraquinones, coumarins, flavonoids, saponins, tannins, and phenolic acids. Total contents of 345.65, 328.44, and 662.02 mg were respectively obtained for alkaloids, anthraquinones, and phenolic compounds in 100 g of the dry sample. The total antioxidant capacity was 42.94% as compared to ascorbic acid. For antimicrobial studies, no concentration of the SP freeze dried extract was able to inhibit the growth of Streptococcus mutans, S. mitis, Staphylococcus aureus, and Candida albicans in both agar disk and agar well diffusion tests. CONCLUSIONS: SP leaves demonstrated the presence of secondary metabolites with potential biological activities. No antimicrobial activity was observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...