Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(2): e13298, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36755595

RESUMO

Encapsulated ionic liquids as green solvents for CO2 capture are reported in this work. We present a novel combination of water-based poly(ionic liquid) and imidazolium-based ionic liquids (Emim[X]). Poly(diallyldimethylammonium tetrafluoroborate)/Emim[X] capsules were developed for the first time using Nano Spray Dryer B-90. Capsules were characterized by FTIR, SEM/EDX, TEM, TGA, DSC, CO2 sorption, and CO2/N2 selectivity, CO2 sorption kinetic and recycling were also demonstrated. Comparing the capsules reported in this work, the combination of poly(diallyldimethylammonium tetrafluoroborate) and the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (P[DADMA]/BF4) showed great potential for CO2 capture and CO2/N2 separation, providing higher results (53.4 mg CO2/g; CO2/N2 selectivity: 4.58).

2.
J Environ Manage ; 268: 110340, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32383660

RESUMO

CO2 separation from natural gas is considered to be a crucial strategy to mitigate global warming problems, meet product specification, pipeline specs and other application specific requirements. Silica xerogels (SX) are considered to be potential materials for CO2 capture due to their high specific surface area. Thus, a series of silica xerogels functionalized with imidazolium, phosphonium, ammonium and pyridinium-based room-temperature ionic liquids (RTILs) were synthesized. The synthesized silica xerogels were characterized by NMR, helium pycnometry, DTA-TG, BET, SEM and TEM. CO2 sorption, reusability and CO2/CH4 selectivity were assessed by the pressure-decay technique. Silica xerogels containing IL demonstrated advantages compared to RTILs used as separation solvents in CO2 capture processes including higher CO2 sorption capacity and faster sorption/desorption. Using fluorinated anion for functionalization of silica xerogels leads to a higher affinity for CO2 over CH4. The best performance was obtained by SX- [bmim] [TF2N] (223.4 mg CO2/g mg/g at 298.15 K and 20 bar). Moreover, SX- [bmim] [TF2N] showed higher CO2 sorption capacity as compared to other reported sorbents. CO2 sorption and CO2/CH4 selectivity results were submitted to an analysis of variance and the means compared using Tukey's test (5%).


Assuntos
Líquidos Iônicos , Dióxido de Silício , Ânions , Dióxido de Carbono , Cátions
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...