Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 277: 127503, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748260

RESUMO

Many pathogenic organisms need to reach either an intracellular compartment or the cytoplasm of a target cell for their survival, replication or immune system evasion. Intracellular pathogens frequently penetrate into the cell through the endocytic and phagocytic pathways (clathrin-mediated endocytosis, phagocytosis and macropinocytosis) that culminates in fusion with lysosomes. However, several mechanisms are triggered by pathogenic microorganisms - protozoan, bacteria, virus and fungus - to avoid destruction by lysosome fusion, such as rupture of the phagosome and thereby release into the cytoplasm, avoidance of autophagy, delaying in both phagolysosome biogenesis and phagosomal maturation and survival/replication inside the phagolysosome. Here we reviewed the main data dealing with phagosome maturation and evasion from lysosomal killing by different bacteria, protozoa, fungi and virus.


Assuntos
Lisossomos , Fagocitose , Lisossomos/microbiologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Endocitose , Evasão da Resposta Imune
2.
Front Cell Dev Biol ; 8: 569729, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195200

RESUMO

Trypanosoma cruzi P21 is a protein secreted by the parasite that plays biological roles directly involved in the progression of Chagas disease. The recombinant protein (rP21) demonstrates biological properties, such as binding to CXCR4 receptors in macrophages, chemotactic activity of immune cells, and inhibiting angiogenesis. This study aimed to verify the effects of rP21 interaction with CXCR4 from non-tumoral cells (MCF-10A) and triple-negative breast cancer cells (MDA-MB-231). Our data showed that the MDA-MB-231 cells expressed higher levels of CXCR4 than did the non-tumor cell lines. Besides, cytotoxicity assays using different concentrations of rP21 showed that the recombinant protein was non-toxic and was able to bind to the cell membranes of both cell lineages. In addition, rP21 reduced the migration and invasion of MDA-MB-231 cells by the downregulation of MMP-9 gene expression. In addition, treatment with rP21 blocked the cell cycle, arresting it in the G1 phase, mainly in MDA-MB-231 cells. Finally, rP21 prevents the chemotaxis and proliferation induced by CXCL12. Our data showed that rP21 binds to the CXCR4 receptors in both cells, downregulates CXCR4 gene expression, and decreases the receptors in the cytoplasm of MDA-MB-231 cells, suggesting CXCR4 internalization. This internalization may explain the desensitization of the receptors in these cells. Thus, rP21 prevents migration, invasion, and progression in MDA-MB-231 cells.

3.
Front Immunol ; 11: 1010, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655546

RESUMO

Trypanosoma cruzi P21 protein (P21) is a putative secreted and immunomodulatory molecule with potent bioactive properties such as induction of phagocytosis and actin cytoskeleton polymerization. Despite the bioactive properties described so far, the action of P21 on parasite replication in muscle cell lineage or T. cruzi parasitism during acute experimental infection is unclear. We observed that recombinant P21 (rP21) decreased the multiplication of T. cruzi in C2C12 myoblasts, phenomenon associated with greater actin polymerization and IFN-γ and IL-4 higher expression. During experimental infection, lower cardiac nests, inflammatory infiltrate and fibrosis were observed in mice infected and treated with rP21. These results were correlated with large expression of IFN-γ counterbalanced by high levels of IL-10, which was consistent with the lower cardiac tissue injury found in these mice. We have also observed that upon stress, such as that induced by the presence of the IFN-γ cytokine, T. cruzi produced more P21. The effect of P21 in controlling the replication of T. cruzi, may indicate an evolutionary mechanism of survival developed by the parasite. Thus, when subjected to different stress conditions, the protozoan produces more P21, which induces T. cruzi latency in the host organism, enabling the protozoan to evade the host's immune system.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Malária/parasitologia , Mioblastos/parasitologia , Miocárdio/patologia , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/fisiologia , Doença Aguda , Animais , Linhagem Celular , Interações Hospedeiro-Parasita , Humanos , Evasão da Resposta Imune , Peptídeos e Proteínas de Sinalização Intercelular/genética , Interferon gama/metabolismo , Malária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Carga Parasitária , Proteínas de Protozoários/genética
4.
Immunobiology ; 225(3): 151904, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31959539

RESUMO

B cells contribute to the immune system in many ways such as antigen presentation to CD4+ T cells, secretion of cytokines and lymphoid tissue organogenesis. Furthermore, they are the only cell type capable of producing immunoglobulins. B cells also account for critical aspects of the resistance against intracellular pathogens. Trypanosoma cruzi is an intracellular parasite that sabotages humoral response by depletion of immature B cells. Polyclonal activation and secretion of non-specific antibodies are also other mechanisms used by T cruzi to evade and subvert the mammalian host immune system, leading to increased parasitemia and susceptibility to Chagas' disease. It remained unclear whether B cell depletion occurs due to direct contact with T. cruzi or results from a global increase in inflammation. Unlike previous reports, we demonstrated in this study that T. cruzi infects human B cells, resulting in parasite-induced activation of caspase-7 followed by proteolytic cleavage of phospholipase Cγ1 and cell death. These data contribute to explain the mechanisms ruling B-cell depletion and evasion of the immune response by T. cruzi.


Assuntos
Actinas/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Caspase 7/metabolismo , Interações Hospedeiro-Patógeno , Fosfolipase C gama/metabolismo , Trypanosoma cruzi/imunologia , Morte Celular , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Doença de Chagas/parasitologia , Humanos , Proteólise
5.
Inflammation ; 42(4): 1360-1369, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30887397

RESUMO

IL-9 is a pleiotropic cytokine, recently recognized as belonging to Th9 cells that are involved in various pathologies. We aimed to evaluate the role of IL-9 in the course of hepatic and renal fibrosis. Female C57BL/6 mice were treated subcutaneously with IL-9 10 ng/mouse and 20 ng/mouse for 40 days, alternating every 5 days each application, the negative control of which was treated with PBS and positive control with CCL4. IL-9 demonstrated fibrogenic activity, leading to increased collagen I and III deposition in both liver and kidney, as well as triggering lobular hepatitis. In addition, IL-9 induced an inflammatory response with recruitment of lymphocytes, neutrophils, and macrophages to both organs. The inflammation was present in the region of the portal and parenchymal zone in the liver and in the cortical and medullary zone in the kidney. IL-9 deregulated liver and kidney antioxidant activities. Our results showed that IL-9 was able to promote hepatorenal dysfunction. Moreover, IL-9 poses as a promising target for therapeutic interventions.


Assuntos
Fibrose/etiologia , Interleucina-9/efeitos adversos , Rim/patologia , Fígado/patologia , Animais , Colágeno/metabolismo , Feminino , Inflamação/induzido quimicamente , Inflamação/patologia , Rim/fisiologia , Fígado/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
6.
Sci Rep ; 7: 44978, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28322302

RESUMO

Chronic chagasic cardiomyopathy (CCC) is arguably the most important form of the Chagas Disease, caused by the intracellular protozoan Trypanosoma cruzi; it is estimated that 10-30% of chronic patients develop this clinical manifestation. The most common and severe form of CCC can be related to ventricular abnormalities, such as heart failure, arrhythmias, heart blocks, thromboembolic events and sudden death. Therefore, in this study, we proposed to evaluate the anti-angiogenic activity of a recombinant protein from T. cruzi named P21 (rP21) and the potential impact of the native protein on CCC. Our data suggest that the anti-angiogenic activity of rP21 depends on the protein's direct interaction with the CXCR4 receptor. This capacity is likely related to the modulation of the expression of actin and angiogenesis-associated genes. Thus, our results indicate that T. cruzi P21 is an attractive target for the development of innovative therapeutic agents against CCC.


Assuntos
Inibidores da Angiogênese/metabolismo , Doença de Chagas/etiologia , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Actinas/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Linhagem Celular , Proliferação de Células , Doença de Chagas/metabolismo , Doença de Chagas/parasitologia , Citoesqueleto/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Matriz Extracelular , Regulação da Expressão Gênica , Humanos , Camundongos , Modelos Biológicos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Multimerização Proteica , Proteínas de Protozoários/farmacologia , Receptores CXCR4 , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
7.
Sci Rep ; 5: 16877, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26574156

RESUMO

Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of cardiomyopathy in Latin America. It is estimated that 10%-30% of all infected individuals will acquire chronic chagasic cardiomyopathy (CCC). The etiology of CCC is multifactorial and involves parasite genotype, host genetic polymorphisms, immune response, signaling pathways and autoimmune progression. Herein we verified the impact of the recombinant form of P21 (rP21), a secreted T. cruzi protein involved in host cell invasion, on progression of inflammatory process in a polyester sponge-induced inflammation model. Results indicated that rP21 can recruit immune cells induce myeloperoxidase and IL-4 production and decrease blood vessels formation compared to controls in vitro and in vivo. In conclusion, T. cruzi P21 may be a potential target for the development of P21 antagonist compounds to treat chagasic cardiomyopathy.


Assuntos
Cardiomiopatias/etiologia , Doença de Chagas/patologia , Proteínas de Protozoários/antagonistas & inibidores , Trypanosoma cruzi/metabolismo , Animais , Cardiomiopatias/tratamento farmacológico , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Quimiotaxia/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/prevenção & controle , Interleucina-4/metabolismo , Leucócitos/citologia , Leucócitos/imunologia , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Peroxidase/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Trypanosoma cruzi/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA