Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 18(17): 1454-1464, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30277154

RESUMO

BACKGROUND: Leishmaniasis is a neglected public health problem caused by several protozoanspecies of the genus Leishmania. The therapeutic arsenal for treating leishmaniasis is quite limited, raising concerns about the occurrence of resistant strains. Furthermore, most of these drugs were developed more than 70 years ago and suffer from poor efficacy and safety and are not well adapted to the needs of patients. Therefore, research on novel natural or synthetic compounds with antiparasitic activity is urgently needed. In this paper, we evaluated the effect and the mechanism of action of naphthotriazolyl-4-oxoquinolines on promastigotes and intracellular amastigotes of Leishmania amazonensis. MATERIALS AND METHODS: The naphthotriazolyl-4-oxoquinoline derivatives were obtained in good to moderate yields via the [3+2] cycloaddition reaction between 1,4-naphtoquinone and azido-4- oxoquinoline derivatives. HMPA at 100°C was established as the best solvent and temperature condition for this reaction. The structures of the compounds were confirmed by spectral analyses (infrared spectroscopy, one- and two-dimensional ¹H and ¹³C NMR spectroscopy, and high-resolution mass spectrometry). The compounds exhibited promising activities with IC50 values ranging from 0.7 to 2.0 µM against intracellular amastigotes of Leishmania amazonensis. The most selective compound was the Npentyl- substituted derivative, which showed a Selectivity Index (SI) of 8.6, making it less toxic than pentamidine (SI 4.5). RESULTS: Our results demonstrated that all compounds, except the N-propyl-substituted derivative, induce ROS production by parasites early in the culture. As a proof of concept, we demonstrated that the most selective compound was able to interfere with sterol biosynthesis in L. amazonensis. CONCLUSION: The naphthotriazolyl-4-oxoquinoline derivatives were obtained in good to moderate yields. These conjugates have potent in vitro antileishmanial activity involving at least two different mechanisms of action, making them promising lead compounds for the development of new therapeutic alternatives for leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Desenho de Fármacos , Leishmania/efeitos dos fármacos , Quinolinas/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
2.
Front Biosci (Landmark Ed) ; 23(5): 967-996, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28930585

RESUMO

The leishmaniases represent a public health problem in under-developed countries and are considered a neglected disease by the World Health Organization (WHO). They are cuased by Leishmania  parasites with different clinical manifestations. Currently, there is no vaccine, and treatment is in-efficient and is associated with both serious side effects often leading to resistance to the parasites. Thus, it is essential to search for new treatment strategies, such as drug repurposing, i.e., the use of drugs that are already used for other diseases. The discovery of new clinical applications for approved drugs is strategic for lowering the cost of drug discovery since human toxicity assays are already conducted. Here, we review a broad analysis of the different aspects of this approach for anti-leishmanial treatment.


Assuntos
Reposicionamento de Medicamentos/métodos , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Tripanossomicidas/farmacologia , Animais , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Leishmania/fisiologia , Leishmaniose/parasitologia , Resultado do Tratamento
3.
Chem Biol Drug Des ; 83(3): 272-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24119090

RESUMO

In this research, a series of substituted 5-(5-amino-1-aryl-1H-pyrazol-4-yl)-1H-tetrazoles were synthesized and evaluated for in vitro antileishmanial activity. Among the derivatives, examined compounds 3b and 3l exhibited promising activity against promastigotes and amastigotes forms of Leishmania amazonensis. The cytotoxicity of these compounds was evaluated on murine cells, giving access to the corresponding selectivity index (SI).


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Tetrazóis/química , Tetrazóis/farmacologia , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Tetrazóis/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...