Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolomics ; 20(3): 63, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796596

RESUMO

INTRODUCTION: Fighter pilots must support the effects of many stressors, including physical and psychological exertion, circadian disturbance, jet lag, and environmental stress. Despite the rigorous selection of military pilots, those factors predispose to failures in physiological compensatory mechanisms and metabolic flexibility. OBJECTIVES: We compared through NMR-based metabolomics the metabolic profile of Brazilian F5 fighter pilots with different flight experiences vs. the control group of non-pilots. We hypothesized that combat pilots have metabolic flexibility associated with combat flight time. METHODS: We evaluated for the first time 34 Brazilian fighter pilots from Santa Cruz Air Base (Rio de Janeiro, RJ) allocated into three groups: pilots with lower total accumulated flight experience < 1,100 h (PC1, n = 7); pilots with higher total accumulated flight experience ≥ 1,100 h (PC2, n = 6); military non-pilots (CONT, n = 21). Data collection included anthropometric measurements, total blood count, lipidogram, markers of oxidative stress, and serum NMR-based metabolomics. RESULTS: In comparison with controls (p < 0.05), pilots exhibited decreased levels of white blood cells (-13%), neutrophils (-15%), lymphocytes (-20%), alfa-glucose (-13%), lactate (-26%), glutamine (-11%), histidine (-20%), and tyrosine (-11%), but higher isobutyrate (+ 10%) concentrations. Significant correlations were found between lactate vs. amino acids in CONT (r = 0.55-0.68, p < 0.001), and vs. glutamine in PC2 (r = 0.94, p = 0.01). CONCLUSION: Fighter pilots with lower experience showed a dysregulation in immune-metabolic function in comparison with controls, which seemed to be counteracted by the accumulation of flight hours. Those findings might have implications for the health preservation and operational training of fighter pilots.


Assuntos
Militares , Pilotos , Humanos , Brasil , Masculino , Adulto , Metabolômica/métodos , Metaboloma/fisiologia , Estresse Oxidativo/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Medicina Aeroespacial
2.
Mech Ageing Dev ; 216: 111875, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748695

RESUMO

Parkinson's disease (PD) is a widespread neurodegenerative disorder, whose complex aetiology remains under construction. While rare variants have been associated with the monogenic PD form, most PD cases are influenced by multiple genetic and environmental aspects. Nonetheless, the pathophysiological pathways and molecular networks involved in monogenic/idiopathic PD overlap, and genetic variants are decisive in elucidating the convergent underlying mechanisms of PD. In this scenario, metabolomics has furnished a dynamic and systematic picture of the synergy between the genetic background and environmental influences that impact PD, making it a valuable tool for investigating PD-related metabolic dysfunctions. In this review, we performed a brief overview of metabolomics current research in PD, focusing on significant metabolic alterations observed in idiopathic PD from different biofluids and strata and exploring how they relate to genetic factors associated with monogenic PD. Dysregulated amino acid metabolism, lipid metabolism, and oxidative stress are the critical metabolic pathways implicated in both genetic and idiopathic PD. By merging metabolomics and genetics data, it is possible to distinguish metabolic signatures of specific genetic backgrounds and to pinpoint subgroups of PD patients who could derive personalized therapeutic benefits. This approach holds great promise for advancing PD research and developing innovative, cost-effective treatments.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Biomarcadores/metabolismo , Metabolômica , Metabolismo dos Lipídeos , Redes e Vias Metabólicas
3.
Stem Cells Int ; 2019: 8169172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30766606

RESUMO

Synovial fluid holds a population of mesenchymal stem cells (MSC) that could be used for clinical treatment. Our goal was to characterize the inflammatory and metabolomic profile of the synovial fluid from osteoarthritic patients and to identify its modulatory effect on synovial fluid cells. Synovial fluid was collected from non-OA and OA patients, which was centrifuged to isolate cells. Cells were cultured for 21 days, characterized with specific markers for MSC, and exposed to a specific cocktail to induce chondrogenic, osteogenic, and adipogenic differentiation. Then, we performed a MTT assay exposing SF cells from non-OA and OA patients to a medium containing non-OA and OA synovial fluid. Synovial fluid from non-OA and OA patients was submitted to ELISA to evaluate BMP-2, BMP-4, IL-6, IL-10, TNF-α, and TGF-ß1 concentrations and to a metabolomic evaluation using 1H-NMR. Synovial fluid cells presented spindle-shaped morphology in vitro. Samples from OA patients formed a higher number of colonies than the ones from non-OA patients. After 21 days, the colony-forming cells from OA patients differentiated into the three mesenchymal cell lineages, under the appropriated induction protocols. Synovial fluid cells increased its metabolic activity after being exposed to the OA synovial fluid. ELISA assay showed that OA synovial fluid samples presented higher concentration of IL-10 and TGF-ß1 than the non-OA, while the NMR showed that OA synovial fluid presents higher concentrations of glucose and glycerol. In conclusion, SFC activity is modulated by OA synovial fluid, which presents higher concentration of IL-10, TGF-ß, glycerol, and glucose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...