Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4127-4130, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085762

RESUMO

Extracting information from the peripheral nervous system with implantable devices remains a significant challenge that limits the advancement of closed-loop neural prostheses. Linear electrode arrays can record neural signals with both temporal and spatial selectivity, and velocity selective recording using the delay-and-add algorithm can enable classification based on fibre type. The maximum likelihood estimation method also measures velocity and is frequently used in electromyography but has never been applied to electroneurography. Therefore, this study compares the two algorithms using in-vivo recordings of electrically evoked compound action potentials from the ulnar nerve of a pig. The performance of these algorithms was assessed using the velocity quality factor (Q-factor), computational time and the influence of the number of channels. The results show that the performance of both algorithms is significantly influenced by the number of channels in the recording array, with accuracies ranging from 77% with only two channels to 98% for 11 channels. Both algorithms were comparable in accuracy and Q-factor for all channels, with the delay-and-add having a slight advantage in the Q-factor.


Assuntos
Eletricidade , Próteses Neurais , Animais , Eletrodos , Eletromiografia , Funções Verossimilhança , Suínos
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 5084-5088, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086016

RESUMO

Temporal interference stimulation has been suggested as a method to reach deep targets during transcutaneous electrical stimulation. Despite its growing use in transcutaneous stimulation therapies, the mechanism of its operation is not fully understood. Recent efforts to fill that gap have focused on computational modelling, in vitro and in vivo experiments relying on physical observations - e.g., sensation or movement. This paper expands the current range of experimental methods by demonstrating in vivo extraneural recordings from the ulnar nerve of a pig while applying temporal interference stimulation at a location targeting a distal part of the nerve. The main aim of the experiment was to compare neural activation using sinusoidal stimulation (100 Hz, 2 kHz, 4 kHz) and temporal interference stimulation (2 kHz and 4 kHz). The recordings showed a significant increase in the magnitude of stimulation artefacts at higher frequencies. While those artefacts could be removed and provided an indication of the depth of modulation, they resulted in the saturation of the amplifiers, limiting the stimulation currents and amplifier gains used. The results of the 100 Hz sine wave stimulation showed clear neural activity correlated to the stimulation waveform. However, this was not observed with temporal interference stimulation. The results suggest that, despite its greater penetration, higher currents might be required to observe a neural response with temporal interference stimulation, and more complex artefact rejection techniques may be required to validate the method.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Nervo Ulnar , Amplificadores Eletrônicos , Animais , Artefatos , Manejo da Dor , Suínos
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2361-2364, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086359

RESUMO

Current neuromodulation research relies heavily on in-vivo animal experiments for developing novel devices and paradigms, which can be costly, time-consuming, and ethically contentious. As an alternative to this, in-vitro systems are being developed for examining explanted tissue in a controlled environment. However, these systems are typically tailored for cellular studies. Thus, this paper describes the development of an in-vitro system for electrically recording and stimulating large animal nerves. This is demonstrated experimentally using explanted pig ulnar nerves, which show evoked compound action potentials (eCAPs) when stimulated. These eCAPs were examined both in the time and velocity domain at a baseline temperature of 20° C, and at temperatures increasing up to those seen in-vivo (37°C). The results highlight that as the temperature is increased within the in-vitro system, faster conduction velocities (CVs) similar to those present in-vivo can be observed. To our knowledge, this is the first time an in-vitro peripheral nerve system has been validated against in-vivo data, which is crucial for promoting more widespread adoption of such systems for the optimisation of neural interfaces.


Assuntos
Condução Nervosa , Nervos Periféricos , Potenciais de Ação/fisiologia , Animais , Potenciais Evocados , Condução Nervosa/fisiologia , Nervos Periféricos/fisiologia , Suínos
4.
Sensors (Basel) ; 22(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009601

RESUMO

Decoding information from the peripheral nervous system via implantable neural interfaces remains a significant challenge, considerably limiting the advancement of neuromodulation and neuroprosthetic devices. The velocity selective recording (VSR) technique has been proposed to improve the classification of neural traffic by combining temporal and spatial information through a multi-electrode cuff (MEC). Therefore, this study investigates the feasibility of using the VSR technique to characterise fibre type based on the electrically evoked compound action potentials (eCAP) propagating along the ulnar nerve of pigs in vivo. A range of electrical stimulation parameters (amplitudes of 50 µA-10 mA and pulse durations of 100 µs, 500 µs, 1000 µs, and 5000 µs) was applied on a cutaneous and a motor branch of the ulnar nerve in nine Danish landrace pigs. Recordings were made with a 14 ring MEC and a delay-and-add algorithm was used to convert the eCAPs into the velocity domain. The results revealed two fibre populations propagating along the cutaneous branch of the ulnar nerve, with mean velocities of 55 m/s and 21 m/s, while only one dominant fibre population was found for the motor branch, with a mean velocity of 63 m/s. Because of its simplicity to provide information on the fibre selectivity and direction of propagation of nerve fibres, VSR can be implemented to advance the performance of the bidirectional control of neural prostheses and bioelectronic medicine applications.


Assuntos
Fibras Nervosas , Nervo Ulnar , Potenciais de Ação , Animais , Estimulação Elétrica , Eletrodos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...