Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 25624, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27167718

RESUMO

The superconducting transition temperature (Tc) of tetragonal Fe1+δSe was enhanced from 8.5 K to 44 K by chemical structure modification. While insertion of large alkaline cations like K or solvated lithium and iron cations in the interlayer space, the [Fe2Se2] interlayer separation increases significantly from 5.5 Šin native Fe1+δSe to >7 Šin KxFe1-ySe and to >9 Šin Li1-xFex(OH)Fe1-ySe, we report on an electrochemical route to modify the superconducting properties of Fe1+δSe. In contrast to conventional chemical (solution) techniques, the electrochemical approach allows to insert non-solvated Li(+) into the Fe1+δSe structure which preserves the native arrangement of [Fe2Se2] layers and their small separation. The amount of intercalated lithium is extremely small (about 0.07 Li(+) per f.u.), however, its incorporation results in the enhancement of Tc up to ∼44 K. The quantum-mechanical calculations show that Li occupies the octahedrally coordinated position, while the [Fe2Se2] layers remain basically unmodified. The obtained enhancement of the electronic density of states at the Fermi level clearly exceeds the effect expected on basis of rigid band behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...