Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech Eng ; 144(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34286824

RESUMO

The mechanical impedance of the joints of the leg governs the body's response to external disturbances, and its regulation is essential for the completion of tasks of daily life. However, it is still unclear how this quantity is regulated at the knee during dynamic tasks. In this work, we introduce a method to estimate the mechanical impedance of spring-mass systems using a torque-controllable exoskeleton with the intention of extending these methods to characterize the mechanical impedance of the human knee during locomotion. We characterize system bandwidth and intrinsic impedance and present a perturbation-based methodology to identify the mechanical impedance of known spring-mass systems. Our approach was able to obtain accurate estimates of stiffness and inertia, with errors under 3% and ∼13-16%, respectively. This work provides a qualitative and quantitative foundation that will enable accurate estimates of knee joint impedance during locomotion in future works.


Assuntos
Exoesqueleto Energizado , Fenômenos Biomecânicos , Impedância Elétrica , Humanos , Articulação do Joelho , Locomoção , Torque
2.
J Orthop Res ; 40(6): 1281-1292, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34432311

RESUMO

Brachial plexus birth injury (BPBI) results in shoulder and elbow paralysis with shoulder internal rotation and elbow flexion contracture as frequent sequelae. The purpose of this study was to develop a technique for measuring functional movement and examine the effect of brachial plexus injury location (preganglionic and postganglionic) on functional movement outcomes in a rat model of BPBI, which we achieved through integration of gait analysis with musculoskeletal modeling and simulation. Eight weeks following unilateral brachial plexus injury, sagittal plane shoulder and elbow angles were extracted from gait recordings of young rats (n = 18), after which rats were sacrificed for bilateral muscle architecture measurements. Musculoskeletal models reflecting animal-specific muscle architecture parameters were used to simulate gait and extract muscle fiber lengths. The preganglionic neurectomy group spent significantly less (p = 0.00116) time in stance and walked with significantly less (p < 0.05) elbow flexion and shoulder protraction in the affected limb than postganglionic neurectomy or control groups. Linear regression revealed no significant linear relationship between passive shoulder external rotation and functional shoulder protraction range of motion. Despite significant restriction in longitudinal muscle growth, normalized functional fiber excursions did not differ significantly between groups. In fact, when superimposed on a normalized force-length curve, neurectomy-impaired muscle fibers (except subscapularis) accessed regions of the curve that overlapped with the control group. Our results suggest the presence of compensatory motor control strategies during locomotion following BPBI. The clinical implications of our findings support emphasis on functional movement analysis in treatment of BPBI, as functional and passive outcomes may differ substantially.


Assuntos
Traumatismos do Nascimento , Neuropatias do Plexo Braquial , Plexo Braquial , Articulação do Ombro , Animais , Traumatismos do Nascimento/complicações , Plexo Braquial/lesões , Neuropatias do Plexo Braquial/complicações , Amplitude de Movimento Articular/fisiologia , Ratos , Manguito Rotador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...