Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 275: 126185, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705019

RESUMO

The hyphenation of electrochemical methods and optical methods in a single portable device is expected to be a challenging combination to enhance the information which can be gained on complex chemical systems. In this paper, a low-cost spectrophotometric device based on low-cost electronics integrated with an electroanalytical cell equipped with a screen printed electrode (SPE) and assembled exploiting a DIY approach, is presented. This easy to use device allowed spectrophotometric and electroanalytical measurements to be performed simultaneously providing simultaneous information and enabling concomitant comparison and autovalidation of the results collected. The analytical robustness and precision of the proposed system was successfully tested on solutions containing mixtures of Patent Blue (E-131) and Brilliant Blue (Erioglaucine E-133), two food dyes displaying optical and redox properties very similar to each other.

2.
Biosensors (Basel) ; 13(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37504142

RESUMO

The need for providing rapid and, possibly, on-the-spot analytical results in the case of intoxication has prompted researchers to develop rapid, sensitive, and cost-effective methods and analytical devices suitable for use in nonspecialized laboratories and at the point of need (PON). In recent years, the technology of paper-based microfluidic analytical devices (µPADs) has undergone rapid development and now provides a feasible, low-cost alternative to traditional rapid tests for detecting harmful compounds. In fact, µPADs have been developed to detect toxic molecules (arsenic, cyanide, ethanol, and nitrite), drugs, and drugs of abuse (benzodiazepines, cathinones, cocaine, fentanyl, ketamine, MDMA, morphine, synthetic cannabinoids, tetrahydrocannabinol, and xylazine), and also psychoactive substances used for drug-facilitated crimes (flunitrazepam, gamma-hydroxybutyric acid (GHB), ketamine, metamizole, midazolam, and scopolamine). The present report critically evaluates the recent developments in paper-based devices, particularly in detection methods, and how these new analytical tools have been tested in forensic and clinical toxicology, also including future perspectives on their application, such as multisensing paper-based devices, microfluidic paper-based separation, and wearable paper-based sensors.


Assuntos
Cocaína , Ketamina , Microfluídica , Toxicologia Forense , Dispositivos Lab-On-A-Chip
3.
Anal Bioanal Chem ; 414(27): 7935-7941, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36131144

RESUMO

Cow's milk allergy is one of the most common food allergies in children with a prevalence of around 2.5%. Milk contains several allergens; the main ones are caseins and ß-lactoglobulin (ß-LG). At regulatory level, ß-LG is not explicitly named, but milk is included in the list of substances or products causing allergies or intolerances. Hence, the presence of ß-LG can be a useful marker for determining the presence of milk in food. In this work, we present an aptasensor based on electrochemiluminescence (ECL) for the quantification of ß-LG in real food matrices displaying integrated advantages consisting of high specificity, good sensitivity, portability, and cost effectiveness. The performance and applicability of this sensor were tested by analyzing a sample of skimmed milk and an oat-based drink proposed as a vegetable substitute for milk of animal origin. We obtained a linear correlation between the intensity of the signal and the concentration of ß-LG standard solutions (y = x * 0.00653 + 1.038, R2 = 0.99). The limit of detection (LOD) and the limit of quantification (LOQ) were found to be 1.36 and 4.55 µg L-1, respectively.


Assuntos
Lactoglobulinas , Hipersensibilidade a Leite , Alérgenos , Animais , Caseínas , Bovinos , Feminino , Leite , Hipersensibilidade a Leite/diagnóstico
4.
Nanomaterials (Basel) ; 12(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335800

RESUMO

Nanomaterials can be used to modify electrodes and improve the conductivity and the performance of electrochemical sensors. Among various nanomaterials, gold-based nanostructures have been used as an anchoring platform for the functionalization of biosensor surfaces. One of the main advantages of using gold for the modification of electrodes is its great affinity for thiol-containing molecules, such as proteins, forming a strong Au-S bond. In this work, we present an impedimetric biosensor based on gold nanoparticles and a truncated aptamer for the quantification of gluten in hydrolyzed matrices such as beer and soy sauce. A good relationship between the Rct values and PWG-Gliadin concentration was found in the range between 0.1-1 mg L-1 of gliadin (corresponding to 0.2-2 mg L-1 of gluten) with a limit of detection of 0.05 mg L-1 of gliadin (corresponding to 0.1 mg L-1 of gluten). The label-free assay was also successfully applied for the determination of real food samples.

5.
Anal Bioanal Chem ; 414(11): 3341-3348, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34617152

RESUMO

Paper has been widely employed as cheap material for the development of a great number of sensors such as pregnancy tests, strips to measure blood sugar, and COVID-19 rapid tests. The need for new low-cost analytical devices is growing, and consequently the use of these platforms will be extended to different assays, both for the final consumer and within laboratories. This work describes a paper-based electrochemical sensing platform that uses a paper disc conveniently modified with recognition molecules and a screen-printed carbon electrode (SPCE) to achieve the detection of gluten in a deep eutectic solvent (DES). This is the first method coupling a paper biosensor based on aptamers and antibodies with the DES ethaline. Ethaline proved to be an excellent extraction medium allowing the determination of very low gluten concentrations. The biosensor is appropriate for the determination of gluten with a limit of detection (LOD) of 0.2 mg L-1 of sample; it can detect gluten extracted in DES with a dynamic range between 0.2 and 20 mg L-1 and an intra-assay coefficient of 10.69%. This approach can be of great interest for highly gluten-sensitive people, who suffer from ingestion of gluten quantities well below the legal limit, which is 20 parts per million in foods labeled gluten-free and for which highly sensitive devices are essential.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , COVID-19 , Anticorpos , Aptâmeros de Nucleotídeos/química , Solventes Eutéticos Profundos , Glutens , Humanos , Limite de Detecção , Solventes/química
6.
Sensors (Basel) ; 21(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206344

RESUMO

Deep Eutectic Solvents (DESs) are a new class of solvents characterized by a remarkable decrease in melting point compared to those of the starting components. The eutectic mixtures can be simply prepared by mixing a Hydrogen Bond Acceptor (HBA) with a Hydrogen Bond Donor (HBD) at a temperature of about 80 °C. They have found applications in different research fields; for instance, they have been employed in organic synthesis, electrochemistry, and bio-catalysis, showing improved biodegradability and lower toxicity compared to other solvents. Herein, we review the use of DESs in biosensor development. We consider the emerging interest in different fields of this green class of solvents and the possibility of their use for the improvement of biosensor performance. We point out some promising examples of approaches for the assembly of biosensors exploiting their compelling characteristics. Furthermore, the extensive ability of DESs to solubilize a wide range of molecules provides the possibility to set up new devices, even for analytes that are usually insoluble and difficult to quantify.


Assuntos
Técnicas Biossensoriais , Catálise , Eletroquímica , Ligação de Hidrogênio , Solventes
7.
J Am Soc Mass Spectrom ; 32(1): 281-288, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33176096

RESUMO

The recent developments on fieldable miniature mass spectrometers require efforts to produce easy-to-use and portable alternative tools to assist in point-of-care analysis. In this paper, the reagent-pencil (RP) technology, which has been used for solvent-free deposition of reagents in paper-based microfluidics, was combined with paper spray ionization mass spectrometry (PS-MS). In this approach, named RP-PS-MS, the PS triangular piece of paper was written with the reagent pencil, consisting of mixtures of graphite and bentonite (used as a support) and a reactive compound, and allowed to react with a given analyte from a sample matrix selectively. We conducted typical applications as proof-of-principles to verify the methodology's general usefulness in detecting small organic molecules in distinct samples. Hence, various aldehydes (2-furaldehyde, valeraldehyde, and benzaldehyde) in spiked cachaça samples (an alcoholic drink produced from fermentation/distillation of sugarcane juice) were promptly detected using a reagent pencil doped with 4-aminophenol (the reactive compound). Similarly, we recognized typical ginsenosides and triacylglycerols (TAGs) in ginseng aqueous infusions and soybean oil samples, respectively, using lithium chloride as the reactive compound. The results indicate that the reagent-pencil methodology is compatible with PS-MS and provides an easy and fast way to detect target analytes in complex samples. The advantage over the usual solution-based deposition of reagents lies in the lack of preparation or carrying different specific solutions for special applications, which can simplify operation, especially in point-of-care analysis with fieldable mass spectrometers.

8.
Biosens Bioelectron ; 165: 112339, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729482

RESUMO

Enzyme-linked immunosorbent assays are currently the most popular methods to quantify gluten in foods. Unfortunately, the antibodies used as specific receptors in such methods are not compatible with the usual solvents for the extraction of gluten proteins. In consequence, commercial tests require a high dilution of the sample after the extraction, increasing the limit of quantification and decreasing convenience. In this work, we have rationally truncated an aptamer capable of recognizing gliadin in a deep eutectic solvent (DES). The truncated aptamer is a 19-nucleotides-long DNA that minimizes self-hybridization, allowing the development of an electrochemical sandwich-based sensor for the quantification of gluten in the DES ethaline. The sensor incorporates two identical biotin-labeled truncated aptamers, one of which is immobilized on a carbon screen-printed electrode and the other reports the binding of gliadin after incubation in streptavidin-peroxidase. This sensor can detect gliadin in DES, with a dynamic range between 1 and 100 µg/L and an intra-assay coefficient of variation of 11%. This analytical performance allows the quantification of 20 µg of gluten/kg of food when 1 g of food is extracted with 10 mL of ethaline. We demonstrate the ability of this method to achieve the measurement of gluten in food samples, after the extraction with pure ethaline. The assay is useful for the analysis of residual gluten levels in foods, thus facilitating the evaluation of any potential health risk associated with the consumption of such food by people with celiac disease or other gluten-related disorders.


Assuntos
Técnicas Biossensoriais , Doença Celíaca , Ensaio de Imunoadsorção Enzimática , Gliadina , Glutens , Humanos , Solventes
9.
Anal Chem ; 92(5): 3689-3696, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32008321

RESUMO

We describe a convenient assembly for screen printed carbon electrodes (SPCE) suitable for analyses in gaseous samples which are of course lacking in supporting electrolytes. It consists of a circular crown of filter paper, soaked in a RTIL or a DES, placed upon a disposable screen printed carbon cell, so as to contact the outer edge of the carbon disk working electrode, as well as peripheral counter and reference electrodes. The electrical contact between the paper crown soaked in RTIL or DES and SPCE electrodes is assured by a gasket, and all components are installed in a polylactic acid holder. As a result of this configuration, a sensitive, fast-responding, membrane-free gas sensor is achieved where the real working electrode surface is the boundary zone of the carbon working disk contacted by the paper crown soaked in the polyelectrolyte. This assembly provides a portable and disposable electrochemical platform, assembled by the easy immobilization onto a porous and inexpensive supporting material such as paper of RTILs or DESs which are characterized by profitable electrical conductivity and negligible vapor pressure. The electroanalytical performance of this device was evaluated by voltammetric and flow injection analyses of oxygen which was chosen as prototype of electroactive gaseous analytes. The results obtained pointed out that this assembly is very profitable for the analysis of gaseous atmospheres, especially when used as detector for FIA in gaseous streams.

10.
Talanta ; 199: 14-20, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30952237

RESUMO

A simple, effective and low-cost technique is here presented for assembling flexible and robust electrochemical devices on transparent PVC supports, using ordinary tools, all installed on a commercial desktop digitally controlled plotter/cutter. Small diamond burs were first set up to rough precise and well defined patterns on the surface of smooth and flexible PVC transparent films. Subsequently, reference, counter and working carbon electrodes were drawn onto abraded patterns by using micropencils (4B graphite leads, 0.5 mm in diameter), in their turn installed on the plotter/cutter. The effective active working surface of electrochemical cells was then defined by a thin adhesive strip or by covering the patterned support with a suitably cut adhesive layer, depending upon whether they were intended for use in batch or drop mode. After optimization of fabrication parameters, such as pressure and speed adopted during bur abrasion and pencil drawing, the electrochemical characterization of these cells was performed by using potassium hexacyanoferrate(II) as redox probe. Voltammetric responses displayed a good inter-device reproducibility (5.6%), thus confirming the effectiveness of this easy and fast assembling strategy. These PVC-based pencil-drawn electrochemical cells were then integrated as thin-layer detectors in adhesive-tape based microfluidic channels, cut and prepared in their turn using the digitally controlled plotter/cutter. These detectors offer the advantage given by the impermeability of PVC supports, thus avoiding absorption of the flowing carrier and consequent analyte broadening, instead occurring when electrochemical cells are pencil drawn on hydrophilic materials as paper. After optimization of the complete fabrication process, the effectiveness of these devices was tested by a proof-of-concept direct quantification of ascorbic acid in commonly used drugs.

11.
Talanta ; 197: 522-529, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771971

RESUMO

The cyclic voltammetric behaviour of propionaldehyde (PA) and hexanaldehyde (HA), in 1-butyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl) imide ([BMIM][NTF2]), 1-butyl-3-methylimidazolium hydrogen sulphate ([BMIM][HSO4]) and 1-butyl-3-methylimidazolium hydroxide ([BMIM][OH]) was investigated at a platinum microelectrode. A clear oxidation process for both aldehydes was recorded only in [BMIM][OH]. On the basis of these evidences, an electrochemical microprobe (EMP), incorporating [BMIM][OH] as electrolyte, was assembled for sensing these aldehydes in gaseous phases. The EMP exposed in the headspace of the liquid aldehydes displayed voltammetric and amperometric responses, which depended on the aldehyde vapour pressures and, consequently, on the temperature employed. The usefulness of the [BMIM][OH] coated EMP for practical applications was assessed in the detection of HA vapour released from squalene (i.e., a lipid simulant matrix) samples spiked with known amounts of the aldehyde. Calibration plots were constructed at 40 °C, 50 °C and 60 °C, using both voltammetry and chronoamperometry. In both cases, good linearity between current and HA concentration in squalene was obtained over the range 3-300 ppm, with correlation coefficients higher than 0.991. Reproducibility, evaluated from at least three replicates, was within 5%. Detection limits, evaluated for a signal-to-noise ratio of 3, were in any case lower than 1.7 ppm. These analytical performances are suitable for monitoring VAs coming from lipid oxidation processes in food. An application concerning the determination of VAs in headspace of sunflower oil during an induced oxidative test to establish its thermal stability was also performed.

12.
Anal Chim Acta ; 1040: 74-80, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30327115

RESUMO

A simple and sensitive device is presented based on the use of pencil-drawn paper based electrochemical detector placed at the end of a cotton thread fluidic channel in wall-jet configuration. This innovative and fast responding electroanalytical system can be adopted for both single and dual electrode electrochemical detection, this last achieved by applying two different potentials at two independent working electrodes drawn on the opposite faces of the paper based detector. Its performance was preliminarily optimized by adopting hexacyanoferrate(II) as probe species undergoing reversible electrochemical processes. These devices were then used for the single electrode detection of ascorbic acid in aqueous samples and the dual electrode detection of orthodiphenols in extra virgin olive oils (EVOOs). In fact, these devices enable hydrophilic orthodiphenols, typically present in EVOOs (extracted by a 80:20% v/v acetonitrile/water mixture), to be discriminated from hydrophilic monophenols instead present in almost all vegetable oils. Flow-injections runs were conducted by using a 0.01 M H2SO4 + 0.5 KCl running electrolyte allowing the rapid and selective detection of hydrophilic orthodiphenols with satisfactory sensitivity and a low enough detection limit (2 µM). Different real samples of EVOOs and sunflower oils were analyzed. Abundant enough contents of orthidiphenols were found in EVOO samples, while no trace of these antioxidants was found in sunflower oils.


Assuntos
Técnicas Eletroquímicas , Análise de Injeção de Fluxo , Papel , Fenóis/análise , Óleo de Girassol/análise , Técnicas Eletroquímicas/instrumentação , Eletrodos , Análise de Injeção de Fluxo/instrumentação
13.
Angew Chem Int Ed Engl ; 57(39): 12850-12854, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30070419

RESUMO

Herein, we show the feasibility of using deep eutectic solvents as a faster way of selecting aptamers targeting poorly water-soluble species. This unexplored concept is illustrated for gluten proteins. In this way, aptamer-based gluten detection can be performed directly in the extraction media with improved detectability. We envision deep implications for applications not only in food safety control but also in biomedicine.


Assuntos
Aptâmeros de Nucleotídeos/química , Glutens/análise , Técnica de Seleção de Aptâmeros/métodos , Solventes/química , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Biotinilação , Glutens/metabolismo , Água/química
14.
Anal Chem ; 89(19): 10454-10460, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28862426

RESUMO

A simple, reliable, and low-cost fabrication method is proposed here for assembling paper-based electrochemical devices (PEDs) using a commercial desktop digitally controlled plotter/cutter, together with ordinary writing tools. Permanent markers (tips of 1 mm) were used to create effective hydrophobic barriers on paper, while micromechanical pencils (mounting 4B graphite leads, 0.5 mm in diameter) were adopted for automatically drawn precise reference, counter, and working carbon electrodes. Fabrication parameters, such as writing pressure and speed, were first optimized, and the electrochemical performance of these devices was then evaluated by using potassium hexacyanoferrate(II) as redox probe. The good interdevice reproducibility (4.8%) displayed by the relevant voltammetric responses confirmed that this strategy can be profitably adopted to easily assemble paper-based electrochemical devices in a highly flexible manner. The simplicity of the instrumentation used and the low cost of each single device (about $0.04), together with the speed of fabrication (about 2 min), are other important features of the proposed strategy. Finally, to confirm the effectiveness of this prototyping method for the analysis of real samples and rapid controls, PEDs assembled by this simple approach were successfully exploited for the analysis of vitamin B6 in food supplements.

15.
Anal Chim Acta ; 950: 41-48, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27916128

RESUMO

A simple, sensitive and fast responding device is described for the discrimination of hydrophilic ortho-diphenols, whose presence in abundant enough amounts is typical for extra virgin olive oils (EVOOs), from hydrophilic mono-phenols instead present in almost all vegetable oils. It consists of a dual electrode detector pencil-drawn at the end of a paper microfluidic channel, defined by hydrophobic barriers, where samples of these antioxidants, extracted from vegetable oils by a 80:20% v/v acetonitrile/water mixture, were applied. Thin-layer chromatographic runs conducted by using a 0.01 M H2SO4 + 1 M KCl running buffer allowed the selective detection of hydrophilic ortho-diphenols by profiting from the fact that they undergo reversible oxidation at less positive potentials than those required by monophenols for displaying their irreversible anodic process. On this basis, a potential for the oxidation of hydrophilic ortho-diphenols was applied to the upstream pencil-drawn electrode (W1) (at which a minor fraction of mono-phenols was also oxidized), while a potential for the reverse process involving the sole product (ortho-quinones) of the reversible oxidation of ortho-diphenols was imposed at the downstream pencil-drawn working electrode (W2). Thus, cathodic peak currents linearly dependent on analyte concentrations could be recorded at W2 which led to a satisfactory detection limit (8 µM, equivalent to 1.23 mg/L) even when working electrodes W1 and W2 with same dimensions were employed. Improved sensitivities and lower detection limits were achieved by increasing the dimensions of W2 with respect to W1, thanks to the improvement of the collection efficiency. Throughout this investigation, hydroxytyrosol (HTy) and tyrosol (Ty) were adopted as models of ortho-diphenols and mono-phenols, respectively, in view of their abundant presence in EVOOs. Real samples of EVOO from different production companies, of a simple olive oil and of a sunflower oil were analyzed. Different hydrophilic ortho-diphenol contents were found in EVOO samples (up to 40.8 mg/kg), while only a negligible amount turned out to be present in simple olive oil. No trace of these antioxidants were instead found in sunflower oil, as expected. All concentrations found were in good agreement with those detected by a more frequently employed spectrophotometric method used for the sake of comparison.


Assuntos
Antioxidantes/análise , Azeite de Oliva/análise , Fenóis/análise , Cromatografia em Camada Fina , Eletrodos , Oxirredução
17.
Electrophoresis ; 36(16): 1837-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25929980

RESUMO

This paper describes for the first time the fabrication of pencil drawn electrodes (PDE) on paper platforms for capacitively coupled contactless conductivity detection (C(4) D) on electrophoresis microchips. PDE-C(4) D devices were attached on PMMA electrophoresis chips and used for detection of K(+) and Na(+) in human tear samples. PDE-C(4) D devices were produced on office paper and chromatographic paper platforms and their performance were thoroughly investigated using a model mixture containing K(+) , Na(+) , and Li(+) . In comparison with chromatographic paper, PDE-C(4) D fabricated on office paper has exhibited better performance due to its higher electrical conductivity. Furthermore, the detector response was similar to that recorded with electrodes prepared with copper adhesive tape. The fabrication of PDE-C(4) D on office paper has offered great advantages including extremely low cost (< $ 0.004 per unit), reduced fabrication time (< 5 min), and minimal instrumentation (pencil and paper). The proposed electrodes demonstrated excellent analytical performance with good reproducibility. For an inter-PDE comparison (n = 7), the RSD values for migration time, peak area, and separation efficiency were lower than 2.5, 10.5, and 14%, respectively. The LOD's achieved for K(+) , Na(+) , and Li(+) were 4.9, 6.8, and 9.0 µM, respectively. The clinical feasibility of the proposed approach was successfully demonstrated with the quantitative analysis of K(+) and Na(+) in tear samples. The concentration levels found for K(+) and Na(+) were, respectively, 20.8 ± 0.1 mM and 101.2 ± 0.1 mM for sample #1, and 20.4 ± 0.1 mM and 111.4 ± 0.1 mM for sample #2.


Assuntos
Cátions/análise , Eletroforese em Microchip/instrumentação , Eletroforese em Microchip/métodos , Papel , Lágrimas/química , Condutividade Elétrica , Eletrodos , Desenho de Equipamento , Humanos
18.
Electrophoresis ; 36(16): 1830-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25892681

RESUMO

We propose here simple electrochemical cells assembled with electrodes pencil drawn on paper for conducting one-spot tests enabling olive oil to be easily distinguished from other vegetable oils. They consist of small circular pads of hydrophilic paper defined by hydrophobic barriers, these last printed by using custom-designed rubber stamps, where working, reference, and counterelectrodes are drawn by pencil leads. These cells were first wetted with a small volume of aqueous electrolyte, avoiding coating of the upper surface of electrodes. A controlled volume of edible oil samples was then applied on top of the moist cell. The results found proved that these devices can be adopted as effective platforms suitable for the detection of electroactive compounds present in edible oils. In fact, they allow voltammetric profiles to be recorded not only for the oxidation of water soluble species (ortho-diphenols, as well as some monophenols and polyphenols) present in olive oils, but also for electroactive hydrophobic components (e.g., α-tocopherol) present in sunflower oils, which were chosen as model of seed oils. The whole of collected findings pointed out that simple one-spot tests performed by these devices enable olive oils to be easily distinguished from other edible oils on the basis of their clearly different voltammetric profiles. A satisfactory interdevice reproducibility (±13%) was estimated by applying strictly similar extra virgin olive oil samples onto seven different cells carefully prepared by the same procedure. An operating mechanism able to account for the detection of also electroactive hydrophobic compounds present in oils is proposed.


Assuntos
Gorduras Insaturadas na Dieta/análise , Técnicas Eletroquímicas/instrumentação , Papel , Técnicas Eletroquímicas/métodos , Eletrodos , Desenho de Equipamento , Fenóis/análise , Reprodutibilidade dos Testes
19.
Anal Chim Acta ; 858: 82-90, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25597806

RESUMO

This paper presents a simple and low-cost method for patterning poly(dimethylsiloxane) (PDMS) barriers in porous support such as paper for the construction of flexible microfluidic paper-based analytical devices (µPADs). The fabrication method consisted of contact-printing a solution of PDMS and hexane (10:1.5 w/w) onto chromatographic paper using custom-designed rubber stamps containing the patterns of µPADs. After penetrating the paper (∼30 s), the PDMS is cured to form hydrophobic barriers. Under optimized conditions, hydrophobic barriers and hydrophilic channels with dimensions down to 949±88 µm and 771±90 µm (n=5), respectively, were obtained. This resolution is well-suitable for most applications in analytical chemistry. Chemical compatibility studies revealed that the PDMS barriers were able to contain some organic solvents, including acetonitrile and methanol, and aqueous solutions of some surfactants. This find is particularly interesting given that acetonitrile and methanol are the most used solvents in chromatographic separations, non-aqueous capillary electrophoresis and electroanalysis, as well as aqueous solutions of surfactants are suitable mediums for cell lyses assays. The utility of the technique was evaluated in the fabrication of paper-based electrochemical devices (PEDs) with pencil-drawn electrodes for experiments in static cyclic voltammetry and flow injection analysis (FIA) with amperometric detection, in both aqueous and organic mediums.


Assuntos
Cromatografia em Papel , Dimetilpolisiloxanos/química , Técnicas Analíticas Microfluídicas , Papel , Impressão , Borracha , Acetaminofen/análise , Cromatografia em Papel/instrumentação , Cromatografia em Papel/métodos , Eletrodos , Desenho de Equipamento , Análise de Injeção de Fluxo , Hexanos/química , Interações Hidrofóbicas e Hidrofílicas , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Solventes/química
20.
Anal Chem ; 85(15): 7241-7, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23808811

RESUMO

An array of quartz crystals coated with different room-temperature ionic liquids (RTILs) is proposed for the analysis of flavors by quartz crystal microbalance (QCM) measurements. Seven RTILs were adopted as sensing layers, all containing imidazolium or phosphonium cations, differing from one another in the length and branching of alkyl groups and neutralized by different anions. The array was at first applied to the analysis of 31 volatile organic compounds (VOCs), such as alcohols, phenols, aldehydes, esters, ketones, acids, amines, hydrocarbons and terpenes, chosen as representative components of a wide variety of food flavors. Multivariate data analysis by the principal component analysis (PCA) approach of the set of the corresponding responses led to separated clusters for these different chemical categories. To further prove the good performance of the RTIL-coated quartz crystal array as an "electronic nose", it was applied to the analysis of headspaces from cinnamon samples belonging to different botanical varieties ( Cinnamon zeylanicum and Cinnamon cassia ). PCA applied to responses recorded on different stocks of samples of both varieties showed that they could be fully discriminated.


Assuntos
Qualidade dos Alimentos , Líquidos Iônicos/química , Odorantes/análise , Técnicas de Microbalança de Cristal de Quartzo/métodos , Alquilação , Cinnamomum zeylanicum/química , Análise de Componente Principal , Temperatura , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...