Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Horm Behav ; 136: 105056, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509673

RESUMO

Mammalian taste bud cells express receptors for numerous peptides implicated elsewhere in the body in the regulation of metabolism, nutrient assimilation, and satiety. The perturbation of several peptide signaling pathways in the gustatory periphery results in changes in behavioral and/or physiological responsiveness to subsets of taste stimuli. We previously showed that Peptide YY (PYY) - which is present in both saliva and in subsets of taste cells - can affect behavioral taste responsiveness and reduce food intake and body weight. Here, we investigated the contributions of taste bud-localized receptors for PYY and the related Neuropeptide Y (NPY) on behavioral taste responsiveness. Y1R, but not Y2R, null mice show reduced responsiveness to sweet, bitter, and salty taste stimuli in brief-access taste tests; similar results were seen when wildtype mice were exposed to Y receptor antagonists in the taste stimuli. Finally, mice in which the gene encoding the NPY propeptide was deleted also showed reduced taste responsiveness to sweet and bitter taste stimuli. Collectively, these results suggest that Y1R signaling, likely through its interactions with NPY, can modulate peripheral taste responsiveness in mice.


Assuntos
Papilas Gustativas , Paladar , Animais , Masculino , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Peptídeo YY/metabolismo , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Papilas Gustativas/metabolismo
2.
Chem Senses ; 44(6): 409-422, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31125082

RESUMO

The metabolic hormone adiponectin is secreted into the circulation by adipocytes and mediates key biological functions, including insulin sensitivity, adipocyte development, and fatty acid oxidation. Adiponectin is also abundant in saliva, where its functions are poorly understood. Here we report that murine taste receptor cells (TRCs) express specific adiponectin receptors and may be a target for salivary adiponectin. This is supported by the presence of all three known adiponectin receptors in transcriptomic data obtained by RNA-seq analysis of purified circumvallate (CV) taste buds. As well, immunohistochemical analysis of murine CV papillae showed that two adiponectin receptors, ADIPOR1 and T-cadherin, are localized to subsets of TRCs. Immunofluorescence for T-cadherin was primarily co-localized with the Type 2 TRC marker phospholipase C ß2, suggesting that adiponectin signaling could impact sweet, bitter, or umami taste signaling. However, adiponectin null mice showed no differences in behavioral lick responsiveness compared with wild-type controls in brief-access lick testing. AAV-mediated overexpression of adiponectin in the salivary glands of adiponectin null mice did result in a small but significant increase in behavioral lick responsiveness to the fat emulsion Intralipid. Together, these results suggest that salivary adiponectin can affect TRC function, although its impact on taste responsiveness and peripheral taste coding remains unclear.


Assuntos
Adiponectina/metabolismo , Receptores de Adiponectina/biossíntese , Papilas Gustativas/citologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Papilas Gustativas/metabolismo
3.
Chem Senses ; 41(5): 449-56, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26994473

RESUMO

It is well known that nutritional intake can vary substantially as a function of demographic variables such as ethnicity and/or sex. Although a variety of factors are known to underlie the relationship between these demographic variables and nutritional intake, it is interesting to speculate that variation in food intake associated with ethnicity or sex may result, in part, from differences in the perceived taste of foods in these different populations. Thus, we initiated a study to evaluate taste responsiveness in different ethnic groups. Moreover, because of the known differences in taste responsiveness between males and females, analyses were stratified by sex. The ethnic groups tested differed significantly from one another in reported perceived taste intensity. Our results showed that Hispanics and African Americans rated taste sensations higher than non-Hispanic Whites and that these differences were more pronounced in males. Understanding the nature of these differences in taste perception is important, because taste perception may contribute to dietary health risk. When attempting to modify diet, individuals of different ethnicities may require personalized interventions that take into account the different sensory experience that these individuals may have when consuming foods.


Assuntos
Percepção Gustatória/fisiologia , Adolescente , Adulto , Negro ou Afro-Americano , Análise de Variância , Ácido Cítrico/farmacologia , Feminino , Hispânico ou Latino , Humanos , Masculino , Pessoa de Meia-Idade , Quinina/farmacologia , Cloreto de Sódio/farmacologia , Sacarose/farmacologia , Percepção Gustatória/efeitos dos fármacos , População Branca , Adulto Jovem
4.
Chemosens Percept ; 8(2): 61-77, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26557212

RESUMO

INTRODUCTION: Decades of research have suggested that nutritional intake contributes to the development of human disease, mainly by influencing the development of obesity and obesity-related conditions. A relatively large body of research indicates that functional variation in human taste perception can influence nutritional intake as well as body mass accumulation. However, there are a considerable number of studies that suggest that no link between these variables actually exists. These discrepancies in the literature likely result from the confounding influence of a variety of other, uncontrolled, factors that can influence ingestive behavior. STRATEGY: In this review, the use of controlled animal experimentation to alleviate at least some of these issues related to the lack of control of experimental variables is discussed. Specific examples of the use of some of these techniques are examined. DISCUSSION AND CONCLUSIONS: The review will close with some specific suggestions aimed at strengthening the link between gustatory neural input and its putative influence on ingestive behaviors and the maintenance of body weight.

5.
Nutr Rev ; 73(2): 83-91, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26024495

RESUMO

It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as "flavor." It is well accepted that five taste qualities ­ sweet, salty, bitter, sour, and umami ­ can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension.


Assuntos
Comportamento Alimentar/fisiologia , Percepção Gustatória/fisiologia , Comportamento de Escolha/fisiologia , Ingestão de Energia/fisiologia , Preferências Alimentares/fisiologia , Variação Genética , Humanos , Paladar/genética , Papilas Gustativas/fisiologia
6.
FASEB J ; 29(1): 164-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25342133

RESUMO

Dysregulation of thyroid hormones triiodothyronine and thyroxine (T3/T4) can impact metabolism, body composition, and development. Thus, it is critical to identify novel mechanisms that impact T3/T4 production. We found that type 2 taste receptors (TAS2Rs), which are activated by bitter-tasting compounds such as those found in many foods and pharmaceuticals, negatively regulate thyroid-stimulating hormone (TSH)-dependent Ca(2+) increases and TSH-dependent iodide efflux in thyrocytes. Immunohistochemical Tas2r-dependent reporter expression and real-time PCR analyses reveal that human and mouse thyrocytes and the Nthy-Ori 3-1 human thyrocyte line express several TAS2Rs. Five different agonists for thyrocyte-expressed TAS2Rs reduced TSH-dependent Ca(2+) release in Nthy-Ori 3-1 cells, but not basal Ca(2+) levels, in a dose-dependent manner. Ca(2+) responses were unaffected by 6-n-propylthiouracil, consistent with the expression of an unresponsive variant of its cognate receptor, TAS2R38, in these cells. TAS2R agonists also inhibited basal and TSH-dependent iodide efflux. Furthermore, a common TAS2R42 polymorphism is associated with increased serum T4 levels in a human cohort. Our findings indicate that TAS2Rs couple the detection of bitter-tasting compounds to changes in thyrocyte function and T3/T4 production. Thus, TAS2Rs may mediate a protective response to overingestion of toxic materials and could serve as new druggable targets for therapeutic treatment of hypo- or hyperthyroidism.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Glândula Tireoide/metabolismo , Adulto , Animais , Cálcio/metabolismo , Linhagem Celular , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Ligantes , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Glândula Tireoide/citologia , Hormônios Tireóideos/metabolismo , Tireotropina/metabolismo , Distribuição Tecidual
7.
J Neurosci ; 33(47): 18368-80, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24259562

RESUMO

Hormone peptide tyrosine-tyrosine (PYY) is secreted into circulation from the gut L-endocrine cells in response to food intake, thus inducing satiation during interaction with its preferred receptor, Y2R. Clinical applications of systemically administered PYY for the purpose of reducing body weight were compromised as a result of the common side effect of visceral sickness. We describe here a novel approach of elevating PYY in saliva in mice, which, although reliably inducing strong anorexic responses, does not cause aversive reactions. The augmentation of salivary PYY activated forebrain areas known to mediate feeding, hunger, and satiation while minimally affecting brainstem chemoreceptor zones triggering nausea. By comparing neuronal pathways activated by systemic versus salivary PYY, we identified a metabolic circuit associated with Y2R-positive cells in the oral cavity and extending through brainstem nuclei into hypothalamic satiety centers. The discovery of this alternative circuit that regulates ingestive behavior without inducing taste aversion may open the possibility of a therapeutic application of PYY for the treatment of obesity via direct oral application.


Assuntos
Comportamento Alimentar/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Peptídeo YY/deficiência , Saliva/enzimologia , Aminofilina , Animais , Condicionamento Psicológico/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Isótopos de Iodo/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocitocina/metabolismo , Peptídeo YY/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Saciação/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Vasopressinas/metabolismo , alfa-MSH/metabolismo
8.
FASEB J ; 27(12): 5022-33, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24043261

RESUMO

It has been hypothesized that the peripheral taste system may be modulated in the context of an animal's metabolic state. One purported mechanism for this phenomenon is that circulating gastrointestinal peptides modulate the functioning of the peripheral gustatory system. Recent evidence suggests endocrine signaling in the oral cavity can influence food intake (FI) and satiety. We hypothesized that these hormones may be affecting FI by influencing taste perception. We used immunohistochemistry along with genetic knockout models and the specific reconstitution of peptide YY (PYY) in saliva using gene therapy protocols to identify a role for PYY signaling in taste. We show that PYY is expressed in subsets of taste cells in murine taste buds. We also show, using brief-access testing with PYY knockouts, that PYY signaling modulates responsiveness to bitter-tasting stimuli, as well as to lipid emulsions. We show that salivary PYY augmentation, via viral vector therapy, rescues behavioral responsiveness to a lipid emulsion but not to bitter stimuli and that this response is likely mediated via activation of Y2 receptors localized apically in taste cells. Our findings suggest distinct functions for PYY produced locally in taste cells vs. that circulating systemically.


Assuntos
Peptídeo YY/metabolismo , Resposta de Saciedade , Paladar , Animais , Ingestão de Alimentos , Camundongos , Camundongos Knockout , Peptídeo YY/genética , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Papilas Gustativas/metabolismo
9.
Semin Cell Dev Biol ; 24(3): 232-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23348523

RESUMO

The peripheral sensory organ of the gustatory system, the taste bud, contains a heterogeneous collection of sensory cells. These taste cells can differ in the stimuli to which they respond and the receptors and other signaling molecules they employ to transduce and encode those stimuli. This molecular diversity extends to the expression of a varied repertoire of bioactive peptides that appear to play important functional roles in signaling taste information between the taste cells and afferent sensory nerves and/or in processing sensory signals within the taste bud itself. Here, we review studies that examine the expression of bioactive peptides in the taste bud and the impact of those peptides on taste functions. Many of these peptides produced in taste buds are known to affect appetite, satiety or metabolism through their actions in the brain, pancreas and other organs, suggesting a functional link between the gustatory system and the neural and endocrine systems that regulate feeding and nutrient utilization.


Assuntos
Peptídeos/metabolismo , Paladar , Animais , Humanos , Transdução de Sinais , Papilas Gustativas/metabolismo
10.
PLoS One ; 7(9): e46358, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23050020

RESUMO

Peptide hormones and their cognate receptors belonging to neuropeptide Y (NPY) family mediate diverse biological functions in a number of tissues. Recently, we discovered the presence of the gut satiation peptide YY (PYY) in saliva of mice and humans and defined its role in the regulation of food intake and body weight maintenance. Here we report the systematic analysis of expression patterns of all NPY receptors (Rs), Y1R, Y2R, Y4R, and Y5R in lingual epithelia in mice. Using four independent assays, immunohistochemistry, in situ hybridization, immunocytochemistry and RT PCR, we show that the morphologically different layers of the keratinized stratified epithelium of the dorsal layer of the tongue express Y receptors in a very distinctive yet overlapping pattern. In particular, the monolayer of basal progenitor cells expresses both Y1 and Y2 receptors. Y1Rs are present in the parabasal prickle cell layer and the granular layer, while differentiated keratinocytes display abundant Y5Rs. Y4Rs are expressed substantially in the neuronal fibers innervating the lamina propria and mechanoreceptors. Basal epithelial cells positive for Y2Rs respond robustly to PYY(3-36) by increasing intracellular Ca(2+) suggesting their possible functional interaction with salivary PYY. In taste buds of the circumvallate papillae, some taste receptor cells (TRCs) express YRs localized primarily at the apical domain, indicative of their potential role in taste perception. Some of the YR-positive TRCs are co-localized with neuronal cell adhesion molecule (NCAM), suggesting that these TRCs may have synaptic contacts with nerve terminals. In summary, we show that all YRs are abundantly expressed in multiple lingual cell types, including epithelial progenitors, keratinocytes, neuronal dendrites and TRCs. These results suggest that these receptors may be involved in the mediation of a wide variety of functions, including proliferation, differentiation, motility, taste perception and satiation.


Assuntos
Epitélio/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Língua/citologia , Animais , Linhagem Celular , Humanos , Hibridização In Situ , Técnicas In Vitro , Camundongos , Receptores de Neuropeptídeo Y/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Chem Senses ; 37(8): 737-44, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22824251

RESUMO

Variation in responsiveness to bitter-tasting compounds has been associated with differences in alcohol consumption. One strong genetic determinant of variation in bitter taste sensitivity is alleles of the TAS2R gene family, which encode chemosensory receptors sensitive to a diverse array of natural and synthetic compounds. Members of the TAS2R family, when expressed in the gustatory system, function as bitter taste receptors. To better understand the relationship between TAS2R function and alcohol consumption, we asked if TAS2R variants are associated with measures of alcohol consumption in a head and neck cancer patient cohort. Factors associated with increased alcohol intake are of strong interest to those concerned with decreasing the incidence of cancers of oral and pharyngeal structures. We found a single nucleotide polymorphism (SNP) located within the TAS2R13 gene (rs1015443 [C1040T, Ser259Asn]), which showed a significant association with measures of alcohol consumption assessed via the Alcohol Use Disorders Identification Test (AUDIT). Analyses with other SNPs in close proximity to rs1015443 suggest that this locus is principally responsible for the association. Thus, our results provide additional support to the emerging hypothesis that genetic variation in bitter taste receptors can impact upon alcohol consumption.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Variação Genética/genética , Neoplasias de Cabeça e Pescoço/genética , Receptores Acoplados a Proteínas G/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Limiar Gustativo/genética
12.
Am J Physiol Regul Integr Comp Physiol ; 303(6): R611-23, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22785426

RESUMO

The contribution of orosensory signals, especially taste, on body mass, and feeding and drinking patterns in the rat was examined. Gustatory deafferentation was produced by bilateral transection of the chorda tympani, glossopharyngeal, and greater superficial petrosal nerves. Total calories consumed from sweetened-milk diet and oil-chow mash by the nerve-transected rats significantly decreased relative to sham-operated controls, mostly attributable to decreases in bout number, but not size. Nevertheless, caloric intake steadily increased over the postsurgical observation period, but body mass remained below both presurgical baseline and control levels and did not significantly increase over this time. After the sweetened-milk diet/oil-chow mash phase, rats received a series of sucrose preference tests. Interestingly, the nerve-transected rats preferred sucrose, and intake did not differ from controls, likely due to the stimulus sharing some nontaste chemosensory properties with the sweetened-milk diet. The neurotomized rats initiated a greater number of sucrose-licking bouts that were smaller in size and slower in licking rate, compared with control rats, and, unlike in control rats, the latter two bout parameters did not vary across concentration. Thus, in the absence of gustatory neural input, body mass is more stable compared with the progressive trajectory of weight gain seen in intact rats, and caloric intake initially decreases but recovers. The consequences of gustatory neurotomy on processes that determine meal initiation (bout number) and meal termination (bout size) are not fixed and appear to be influenced by presurgical experience with food stimuli coupled with its nongustatory chemosensory properties.


Assuntos
Vias Aferentes/fisiologia , Peso Corporal/fisiologia , Denervação , Comportamento Alimentar/fisiologia , Estômago/inervação , Ração Animal/análise , Animais , Apetite/fisiologia , Óleo de Milho/química , Dieta , Gorduras Insaturadas na Dieta/análise , Comportamento de Ingestão de Líquido/fisiologia , Ingestão de Energia/fisiologia , Masculino , Leite/química , Ratos , Ratos Sprague-Dawley , Estômago/fisiologia , Sacarose/química , Sacarose/farmacologia , Edulcorantes/química
13.
Am J Physiol Endocrinol Metab ; 303(4): E464-74, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22669246

RESUMO

The glucose-dependent secretion of the insulinotropic hormone glucagon-like peptide-1 (GLP-1) is a critical step in the regulation of glucose homeostasis. Two molecular mechanisms have separately been suggested as the primary mediator of intestinal glucose-stimulated GLP-1 secretion (GSGS): one is a metabotropic mechanism requiring the sweet taste receptor type 2 (T1R2) + type 3 (T1R3) while the second is a metabolic mechanism requiring ATP-sensitive K(+) (K(ATP)) channels. By quantifying sugar-stimulated hormone secretion in receptor knockout mice and in rats receiving Roux-en-Y gastric bypass (RYGB), we found that both of these mechanisms contribute to GSGS; however, the mechanisms exhibit different selectivity, regulation, and localization. T1R3(-/-) mice showed impaired glucose and insulin homeostasis during an oral glucose challenge as well as slowed insulin granule exocytosis from isolated pancreatic islets. Glucose, fructose, and sucralose evoked GLP-1 secretion from T1R3(+/+), but not T1R3(-/-), ileum explants; this secretion was not mimicked by the K(ATP) channel blocker glibenclamide. T1R2(-/-) mice showed normal glycemic control and partial small intestine GSGS, suggesting that T1R3 can mediate GSGS without T1R2. Robust GSGS that was K(ATP) channel-dependent and glucose-specific emerged in the large intestine of T1R3(-/-) mice and RYGB rats in association with elevated fecal carbohydrate throughout the distal gut. Our results demonstrate that the small and large intestines utilize distinct mechanisms for GSGS and suggest novel large intestine targets that could mimic the improved glycemic control seen after RYGB.


Assuntos
Derivação Gástrica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/metabolismo , Animais , Células Cultivadas , Fezes/química , Frutose/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose/farmacologia , Teste de Tolerância a Glucose , Glibureto/farmacologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Hipoglicemiantes/farmacologia , Íleo/efeitos dos fármacos , Íleo/metabolismo , Insulina/metabolismo , Secreção de Insulina , Intestino Grosso/efeitos dos fármacos , Intestino Grosso/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Canais KATP/metabolismo , Camundongos , Ratos , Sacarose/análogos & derivados , Sacarose/farmacologia , Papilas Gustativas/efeitos dos fármacos
14.
Chem Senses ; 35(7): 545-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20605873

RESUMO

It has been postulated for decades that ion channels serve as receptors for most sour tasting stimuli. Though many candidates exist, definitive evidence linking any particular channel to sour taste perception has been elusive. Several studies have suggested that two members of the polycystic kidney disease-like family may function as components of an ionotropic taste receptor mediating the transduction of acids. However, the precise role of these proteins in sour taste is controversial. In this issue of Chemical Senses, Nelson et al. use behavioral and electrophysiological approaches in gene-targeted mice to show that one of these putative sour taste receptor subunits, Pkd1l3, is unnecessary for normal taste responses to acids. Their results suggest that other mechanisms and/or other candidate receptors must be contributing to the transduction of acids and the subsequent perception of sour taste.


Assuntos
Ácidos/metabolismo , Papilas Gustativas/metabolismo , Paladar , Animais , Camundongos , Camundongos Knockout , Proteína Quinase C/metabolismo , Paladar/fisiologia
15.
FASEB J ; 24(10): 3960-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20547661

RESUMO

The gustatory system provides critical information about the quality and nutritional value of food before it is ingested. Thus, physiological mechanisms that modulate taste function in the context of nutritional needs or metabolic status could optimize ingestive decisions. We report that glucagon, which plays important roles in the maintenance of glucose homeostasis, enhances sweet taste responsiveness through local actions in the mouse gustatory epithelium. Using immunohistochemistry and confocal microscopy, we found that glucagon and its receptor (GlucR) are coexpressed in a subset of mouse taste receptor cells. Most of these cells also express the T1R3 taste receptor implicated in sweet and/or umami taste. Genetic or pharmacological disruption of glucagon signaling in behaving mice indicated a critical role for glucagon in the modulation of taste responsiveness. Scg5(-/-) mice, which lack mature glucagon, had significantly reduced responsiveness to sucrose as compared to wild-type littermates in brief-access taste tests. No significant differences were seen in responses to prototypical salty, sour, or bitter stimuli. Taste responsiveness to sucrose was similarly reduced upon acute and local disruption of glucagon signaling by the GlucR antagonist L-168,049. Together, these data indicate a role for local glucagon signaling in the peripheral modulation of sweet taste responsiveness.


Assuntos
Glucagon/metabolismo , Transdução de Sinais , Paladar , Animais , Sequência de Bases , Comportamento Animal , Primers do DNA , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Glucagon/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Papilas Gustativas/citologia , Papilas Gustativas/fisiologia
16.
Curr Opin Investig Drugs ; 11(4): 447-54, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20336593

RESUMO

Type 2 diabetes mellitus (T2DM), which is characterized by insulin and glucose dysregulation, is a major contributor to the development of cardiovascular disease, renal failure and premature death. Incretin hormones are released from the intestines upon nutrient ingestion and contribute to glucose homeostasis in part by promoting insulin secretion from the pancreas. Drugs that enhance the incretin response have emerged as effective treatments for T2DM. Several recent studies have revealed that incretin secretion from enteroendocrine cells in the intestines can be modulated by T1R and T2R receptors, proteins that have been demonstrated to function as taste receptors. This review focuses on the intriguing finding that taste receptors may be involved in modulating the incretin response, and considers T1Rs and T2Rs as potential targets for new hypoglycemic drugs.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Incretinas/uso terapêutico , Insulina/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Glucose/uso terapêutico , Humanos
17.
Appetite ; 54(1): 93-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19782709

RESUMO

Insensitivity to the bitter-tasting compound 6-n-propylthiouracil (PROP) has been proposed as a marker for individual differences in taste perception that influence food preference and intake. The principal genetic determinants of phenotypic variation in PROP taste sensitivity are alleles of the TAS2R38 gene, which encodes a chemosensory receptor sensitive to thiourea compounds including PROP and phenylthiocarbamide. Members of the TAS2R family are expressed in the gustatory system, where they function as bitter taste receptors, and throughout the gut, where their physiological roles in prandial, gut-derived hormone release are beginning to be elucidated. To better understand the relationship between TAS2R function and ingestive behaviors, we asked if TAS2R38 variants are associated with one or more of three eating behaviors: restraint, disinhibition, and hunger. We genotyped a single nucleotide polymorphism (SNP) located within the TAS2R38 gene, rs1726866 (T785C, Val262Ala) in 729 nondiabetic individuals (381 females, 348 males) within the Amish Family Diabetes Study. Eating behaviors were assessed using the Three-Factor Eating Questionnaire. An association analysis between rs1726866 and these three traits revealed a significant association of the PROP-insensitive "T" allele with increased disinhibition (p=0.03). Because eating behaviors differ substantially between males and females, we subsequently performed sex-stratified analyses, which revealed a strong association in females (p=0.0002) but not in males. Analyses with other SNPs in close proximity to rs1726866 suggest that this locus is principally responsible for the association. Therefore, our results indicate that a polymorphism in TAS2R38 is associated with differences in ingestive behavior.


Assuntos
Comportamento Alimentar , Hiperfagia/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores Acoplados a Proteínas G/genética , Dieta/métodos , Dieta/estatística & dados numéricos , Feminino , Variação Genética/genética , Humanos , Fome/fisiologia , Inibição Psicológica , Masculino , Pessoa de Meia-Idade , Pennsylvania , Protestantismo , Fatores Sexuais , Inquéritos e Questionários , Paladar/genética
18.
Ann N Y Acad Sci ; 1170: 98-101, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19686117

RESUMO

Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we found that GLP-1 signaling plays an important role in the modulation of taste sensitivity: GLP-1R knockout mice exhibit a dramatic reduction in sweet taste sensitivity as well as an enhanced sensitivity to umami-tasting stimuli. Together, these findings suggest a novel paracrine mechanism for the hormonal modulation of taste function in mammals.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Transdução de Sinais , Papilas Gustativas/metabolismo , Paladar , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1 , Camundongos , Camundongos Knockout , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Receptores de Glucagon/fisiologia
19.
PLoS One ; 3(12): e3974, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19092995

RESUMO

TAS1R- and TAS2R-type taste receptors are expressed in the gustatory system, where they detect sweet- and bitter-tasting stimuli, respectively. These receptors are also expressed in subsets of cells within the mammalian gastrointestinal tract, where they mediate nutrient assimilation and endocrine responses. For example, sweeteners stimulate taste receptors on the surface of gut enteroendocrine L cells to elicit an increase in intracellular Ca(2+) and secretion of the incretin hormone glucagon-like peptide-1 (GLP-1), an important modulator of insulin biosynthesis and secretion. Because of the importance of taste receptors in the regulation of food intake and the alimentary responses to chemostimuli, we hypothesized that differences in taste receptor efficacy may impact glucose homeostasis. To address this issue, we initiated a candidate gene study within the Amish Family Diabetes Study and assessed the association of taste receptor variants with indicators of glucose dysregulation, including a diagnosis of type 2 diabetes mellitus and high levels of blood glucose and insulin during an oral glucose tolerance test. We report that a TAS2R haplotype is associated with altered glucose and insulin homeostasis. We also found that one SNP within this haplotype disrupts normal responses of a single receptor, TAS2R9, to its cognate ligands ofloxacin, procainamide and pirenzapine. Together, these findings suggest that a functionally compromised TAS2R receptor negatively impacts glucose homeostasis, providing an important link between alimentary chemosensation and metabolic disease.


Assuntos
Glucose/metabolismo , Homeostase/genética , Receptores Acoplados a Proteínas G/fisiologia , Adulto , Idoso , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Enteroendócrinas/metabolismo , Família , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Desequilíbrio de Ligação , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Percepção Gustatória/genética , Percepção Gustatória/fisiologia
20.
J Neurochem ; 106(1): 455-63, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18397368

RESUMO

In many sensory systems, stimulus sensitivity is dynamically modulated through mechanisms of peripheral adaptation, efferent input, or hormonal action. In this way, responses to sensory stimuli can be optimized in the context of both the environment and the physiological state of the animal. Although the gustatory system critically influences food preference, food intake and metabolic homeostasis, the mechanisms for modulating taste sensitivity are poorly understood. In this study, we report that glucagon-like peptide-1 (GLP-1) signaling in taste buds modulates taste sensitivity in behaving mice. We find that GLP-1 is produced in two distinct subsets of mammalian taste cells, while the GLP-1 receptor is expressed on adjacent intragemmal afferent nerve fibers. GLP-1 receptor knockout mice show dramatically reduced taste responses to sweeteners in behavioral assays, indicating that GLP-1 signaling normally acts to maintain or enhance sweet taste sensitivity. A modest increase in citric acid taste sensitivity in these knockout mice suggests GLP-1 signaling may modulate sour taste, as well. Together, these findings suggest a novel paracrine mechanism for the regulation of taste function.


Assuntos
Células Epiteliais/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores de Glucagon/genética , Células Receptoras Sensoriais/metabolismo , Papilas Gustativas/metabolismo , Paladar/genética , Animais , Ácido Cítrico/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Macaca , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/efeitos dos fármacos , Limiar Sensorial/efeitos dos fármacos , Limiar Sensorial/fisiologia , Transdução de Sinais/fisiologia , Edulcorantes/farmacologia , Papilas Gustativas/citologia , Papilas Gustativas/efeitos dos fármacos , Fibras Aferentes Viscerais/citologia , Fibras Aferentes Viscerais/efeitos dos fármacos , Fibras Aferentes Viscerais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...