Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(6)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36228587

RESUMO

Disorder is an essential parameter in photonic systems and devices, influencing phenomena such as the robustness of topological photonic states and the Anderson localization of modes in waveguides. We develop and demonstrate a method for both analyzing and visualizing positional, size, and shape disorder in periodic structures such as photonic crystals. This analysis method shows selectivity for disorder type and sensitivity to disorder down to less than 1%. We show that the method can be applied to more complex shapes such as those used in topological photonics. The method provides a powerful tool for process development and quality control, including analyzing the precision of E-beam lithography before patterns are transferred; quantifying the precision limits of lithography, deposition, or etch processes; and studying the intentional displacement of individual objects within otherwise periodic arrays.

2.
Rev Sci Instrum ; 91(3): 033701, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259996

RESUMO

An ultrafast vector magneto-optical Kerr effect (MOKE) microscope with integrated time-synchronized electrical pulses, two-dimensional magnetic fields, and low-temperature capabilities is reported. The broad range of capabilities of this instrument allows the comprehensive study of spin-orbital interaction-driven magnetization dynamics in a variety of novel magnetic materials or heterostructures: (1) electrical-pump and optical-probe spectroscopy allows the study of current-driven magnetization dynamics in the time domain, (2) two-dimensional magnetic fields along with the vector MOKE microscope allow the thorough study of the spin-orbital-interaction induced magnetization re-orientation in arbitrary directions, and (3) the low-temperature capability allows us to explore novel materials/devices where emergent phenomena appear at low temperature. We discuss the details and challenges of this instrument development and integration and present two datasets that demonstrate and benchmark the capabilities of this instrument: (a) a room-temperature time-domain study of current-induced magnetization dynamics in a ferromagnet/heavy metal bilayer and (b) a low-temperature quasi-static polar MOKE study of the magnetization of a novel compensated ferrimagnet.

3.
ACS Nano ; 13(1): 489-497, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30576110

RESUMO

Photon upconversion is a photophysical process in which two low-energy photons are converted into one high-energy photon. Photon upconversion has broad appeal for a range of applications from biomedical imaging and targeted drug release to solar energy harvesting. Current upconversion nanosystems, including lanthanide-doped nanocrystals and triplet-triplet annihilation molecules, have achieved upconversion quantum yields on the order of 10-30%. However, the performance of these materials is hampered by inherently narrow absorption cross sections and fixed energy levels originating in atomic, ionic, or molecular states. Semiconductors, on the other hand, have inherently wide absorption cross sections. Moreover, recent advances enable the synthesis of colloidal semiconductor nanoparticles with complex heterostructures that can control band alignments and tune optical properties. We synthesize and characterize a three-component heterostructure that successfully upconverts photons under continuous-wave illumination and solar-relevant photon fluxes. The heterostructure is composed of two cadmium selenide quantum dots (QDs), an absorber and emitter, spatially separated by a cadmium sulfide nanorod (NR). We demonstrate that the principles of semiconductor heterostructure engineering can be applied to engineer improved upconversion efficiency. We first eliminate electron trap states near the surface of the absorbing QD and then tailor the band gap of the NR such that charge carriers are funneled to the emitting QD. When combined, these two changes result in a 100-fold improvement in photon upconversion performance.

4.
Phys Rev B ; 93(24)2016.
Artigo em Inglês | MEDLINE | ID: mdl-32118123

RESUMO

There has been tremendous progress in manipulating electron and hole-spin states in quantum dots or quantum dot molecules (QDMs) with growth-direction (vertical) electric fields and optical excitations. However, the response of carriers in QDMs to an in-plane (lateral) electric field remains largely unexplored. We computationally explore spin-mixing interactions in the molecular states of single holes confined in vertically stacked InAs/GaAs QDMs using atomistic tight-binding simulations. We systematically investigate QDMs with different geometric structure parameters and local piezoelectric fields. We observe both a relatively large Stark shift and a change in the Zeeman splitting as the magnitude of the lateral electric field increases. Most importantly, we observe that lateral electric fields induce hole-spin mixing with a magnitude that increases with increasing lateral electric field over a moderate range. These results suggest that applied lateral electric fields could be used to fine tune and manipulate, in situ, the energy levels and spin properties of single holes confined in QDMs.

5.
Materials (Basel) ; 8(4): 1858-1870, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28788036

RESUMO

The engineering of quantum dot solids with low defect concentrations and efficient carrier transport through a ligand strategy is crucial to achieve efficient quantum dot (QD) optoelectronic devices. Here, we study the consequences of various surface ligand treatments on the light emission properties of PbS quantum dot films using 1,3-benzenedithiol (1,3-BDT), 1,2-ethanedithiol (EDT), mercaptocarboxylic acids (MPA) and ammonium sulfide ((NH4)2S). We first investigate the influence of different ligand treatments on the inter-dot separation, which mainly determines the conductivity of the QD films. Then, through a combination of photoluminescence and transient photoluminescence characterization, we demonstrate that the radiative and non-radiative recombination mechanisms in the quantum dot films depend critically on the length and chemical structure of the surface ligands.

6.
ACS Nano ; 5(12): 9950-7, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22085035

RESUMO

Benzenedithiol (BDT) and ethanedithiol (EDT) ligand-exchange treatments can be used to cross-link colloidal PbS quantum dots into nanocrystalline film structures with distinct optoelectronic properties. Such structures can provide a unique platform to study the energy transfer between layers of quantum dots with different sizes. In this report, efficient exciton funneling and recycling of surface state-bound excitons is observed in cascaded PbS quantum dot-based multilayered superstructures, where the excitons transfer from the larger band gap or donor layers to the smallest band gap or acceptor layers. In this system, both the BDT- and EDT-treated cascaded structures exhibit dramatically enhanced photoluminescence from the acceptor layers. As we show, the energy transfer mechanisms involved and their efficiencies are significantly different depending on the ligand-exchange treatment. In the future, we believe these efficient exciton recycling and funneling mechanisms could be used to improve significantly the photocurrent, charge-transport, and conversion efficiencies in low-cost nanocrystalline and hybrid solar cells and the emission efficiencies in hybrid light-emitting devices.


Assuntos
Chumbo/química , Pontos Quânticos , Compostos de Selênio/química , Transferência de Energia , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...