Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 223, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943137

RESUMO

BACKGROUND: Multiple genetic and epigenetic regulatory mechanisms are crucial in the development and tumorigenesis process. Transcriptional regulation often involves intricate relationships and networks with post-transcriptional regulatory molecules, impacting the spatial and temporal expression of genes. However, the synergistic relationship between transcription factors and N6-methyladenosine (m6A) modification in regulating gene expression, as well as their influence on the mechanisms underlying the occurrence and progression of non-small cell lung cancer (NSCLC), requires further investigation. The present study aimed to investigate the synergistic relationship between transcription factors and m6A modification on NSCLC. METHODS: The transcription factor NFIC and its potential genes was screened by analyzing publicly available datasets (ATAC-seq, DNase-seq, and RNA-seq). The association of NFIC and its potential target genes were validated through ChIP-qPCR and dual-luciferase reporter assays. Additionally, the roles of NFIC and its potential genes in NSCLC were detected in vitro and in vivo through silencing and overexpression assays. RESULTS: Based on multi-omics data, the transcription factor NFIC was identified as a potential tumor suppressor of NSCLC. NFIC was significantly downregulated in both NSCLC tissues and cells, and when NFIC was overexpressed, the malignant phenotype and total m6A content of NSCLC cells was suppressed, while the PI3K/AKT pathway was inactivated. Additionally, we discovered that NFIC inhibits the expression of METTL3 by directly binding to its promoter region, and METTL3 regulates the expression of KAT2A, a histone acetyltransferase, by methylating the m6A site in the 3'UTR of KAT2A mRNA in NSCLC cells. Intriguingly, NFIC was also found to negatively regulate the expression of KAT2A by directly binding to its promoter region. CONCLUSIONS: Our findings demonstrated that NFIC suppresses the malignant phenotype of NSCLC cells by regulating gene expression at both the transcriptional and post-transcriptional levels. A deeper comprehension of the genetic and epigenetic regulatory mechanisms in tumorigenesis would be beneficial for the development of personalized treatment strategies.

2.
Cancer Sci ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888105

RESUMO

Multiple epigenetic regulatory mechanisms exert critical roles in tumor development, and understanding the interactions and impact of diverse epigenetic modifications on gene expression in cancer is crucial for the development of precision medicine. We found that methyltransferase-like 14 (METTL14) was significantly downregulated in non-small-cell lung cancer (NSCLC) tissues. Functional experiments demonstrated that overexpression of METTL14 inhibited the proliferation and migration of NSCLC cells both in vivo and in vitro, and the colorimetric m6A quantification assay also showed that knockdown of METTL14 notably reduced global m6A modification levels in NSCLC cells. By using the methylated-RNA immunoprecipitation-qPCR and dual-luciferase reporter assays, we verified that long noncoding RNA LINC02747 was a target of METTL14 and was regulated by METTL14-mediated m6A modification, and silencing LINC02747 inhibited the malignant progression of NSCLC by modulating the PI3K/Akt and CDK4/Cyclin D1 signaling pathway. Further studies revealed that overexpression of METTL14 promoted m6A methylation and accelerated the decay of LINC02747 mRNA via increased recognition of the "GAACU" binding site by YTHDC2. Additionally, histone demethylase lysine-specific histone demethylase 5B (KDM5B) mediated the demethylation of histone H3 lysine 4 tri-methylation (H3K4me3) in the METTL14 promoter region and repressed its transcription. In summary, KDM5B downregulated METTL14 expression at the transcriptional level in a H3K4me3-dependent manner, while METTL14 modulated LINC02747 expression via m6A modification. Our results demonstrate a synergy of multiple mechanisms in regulating the malignant phenotype of NSCLC, revealing the complex regulation involved in the occurrence and development of cancer.

4.
J Magn Reson Imaging ; 59(3): 737-746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37254969

RESUMO

The habenula (Hb) is involved in many natural human behaviors, and the relevance of its alterations in size and neural activity to several psychiatric disorders and addictive behaviors has been presumed and investigated in recent years using magnetic resonance imaging (MRI). Although the Hb is small, an increasing number of studies have overcome the difficulties in MRI. Conventional structural-based imaging also has great defects in observing the Hb contrast with adjacent structures. In addition, more and more attention should be paid to the Hb's functional, structural, and quantitative imaging studies. Several advanced MRI methods have recently been employed in clinical studies to explore the Hb and its involvement in psychiatric diseases. This review summarizes the anatomy and function of the human Hb; moreover, it focuses on exploring the human Hb with noninvasive MRI approaches, highlighting strategies to overcome the poor contrast with adjacent structures and the need for multiparametric MRI to develop imaging markers for diagnosis and treatment follow-up. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Habenula , Transtornos Mentais , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Habenula/anatomia & histologia , Imageamento por Ressonância Magnética/métodos
5.
Environ Sci Pollut Res Int ; 31(3): 3495-3511, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38085488

RESUMO

With the accelerated modernization of agriculture and industry, sulfides have been released into the environment as a by-products of various production processes. Elevated levels of sulfide pose a threat to organisms' health and disrupt ecosystem equilibrium. This study successfully isolated two highly efficient sulfur-oxidizing strains, namely Pseudomonas aeruginosa GHWS3 and Sphingobacterium sp. GHWS5. Neither strain exhibited hemolytic activity or pathogenicity. Additionally, GHWS3 inhibited the common aquaculture pathogen Vibrio anguillarum, while GHWS5 exhibited inhibitory effects against Vibrio harveyi. GHWS3 and GHWS5 demonstrated effective removal of sulfide under the following conditions: temperature range of 20-40 °C, pH level of 4.5-8.5, salinity range of 0-50‰, C/N ratio of 5-15, and sulfide concentration of 20-200 mg/L. By amplifying the key functional genes of the sulfur-oxidizing Sox and rDsr systems in both GHWS3 and GHWS5 strains, potential desulfurization pathways were analyzed. Furthermore, both strains displayed high efficiency in removing sulfides from actual aquaculture pond substrate mixtures. The findings of this study provide two promising candidate strains for sulfides removal from farm tailwater, industrial wastewater, and domestic wastewater.


Assuntos
Sphingobacterium , Águas Residuárias , Sphingobacterium/metabolismo , Pseudomonas/metabolismo , Ecossistema , Reatores Biológicos/microbiologia , Oxirredução , Enxofre/metabolismo , Sulfetos/metabolismo
6.
Clin Epigenetics ; 15(1): 153, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37742030

RESUMO

BACKGROUND: Multiple genetic and epigenetic regulatory mechanisms play a vital role in tumorigenesis and development. Understanding the interplay between different epigenetic modifications and its contribution to transcriptional regulation in cancer is essential for precision medicine. Here, we aimed to investigate the interplay between N6-methyladenosine (m6A) modifications and histone modifications in lung adenocarcinoma (LUAD). RESULTS: Based on the data from public databases, including chromatin property data (ATAC-seq, DNase-seq), methylated RNA immunoprecipitation sequencing (MeRIP-seq), and gene expression data (RNA-seq), a m6A-related differentially expressed gene nerve growth factor inducible (VGF) was identified between LUAD tissues and normal lung tissues. VGF was significantly highly expressed in LUAD tissues and cells, and was associated with a worse prognosis for LUAD, silencing of VGF inhibited the malignant phenotype of LUAD cells by inactivating the PI3K/AKT/mTOR pathway. Through the weighted correlation network analysis (WGCNA) and integration of TCGA-LUAD RNA-seq and m6A methyltransferase METTL3-knockdown RNA-seq data, a significant positive correlation between METTL3 and VGF was observed. By using the MeRIP-qPCR and dual-luciferase reporter assays, we demonstrated that METTL3 knockdown decreased m6A modification level of VGF coding sequences in LUAD cells, the colorimetric m6A quantification assay also showed that METTL3 knockdown significantly decreased global m6A modification level in LUAD cells. Interestingly, we found that METTL3 knockdown also reduced VGF expression by increasing H3K36me3 modification at the VGF promoter. Further research revealed that METTL3 knockdown upregulated the expression of histone methylase SETD2, the major H3K36me3 methyltransferase, by methylating the m6A site in the 3'UTR of SETD2 mRNA in LUAD cells. CONCLUSIONS: Overall, our results reveal that the expression of VGF in LUAD cells is regulated spatio-temporally by METTL3 through both transcriptional (via histone modifications) and post-transcriptional (via m6A modifications) mechanisms. The synergistic effect of these multiple epigenetic mechanisms provides new opportunities for the diagnosis and precision treatment of tumors.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Metiltransferases , Humanos , Adenocarcinoma de Pulmão/genética , Metilação de DNA , Código das Histonas , Neoplasias Pulmonares/genética , Metiltransferases/genética , Fatores de Crescimento Neural , Fosfatidilinositol 3-Quinases
7.
Front Physiol ; 13: 949486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569748

RESUMO

Background: In vitro induction of spermatogonial stem cells (SSCs) from embryonic stem cells (ESCs) provides a promising tool for the treatment of male infertility. A variety of molecules are involved in this complex process, which needs to be further clarified. Undoubtedly, the increased knowledge of SSC formation will be beneficial to facilitate the currently complex induction process. Methods: Based on ATAC-seq, DNase-seq, RNA-seq, and microarray data from GEO datasets, chromatin property data (ATAC-seq, DNase-seq) and gene expression data (RNA-seq, microarray data) were combined to search for SSC-specific transcription factors (TFs) and hub SSC-specific genes by using the WGCNA method. Then, we applied RNA-seq and microarray data screening for key SSC-specific TFs and constructed key SSC-specific TF-mediated gene regulatory networks (GRNs) using ChIP-seq data. Results: First, after analysis of the ATAC-seq and DNase-seq data of mouse ESCs, primordial germ cells (PGCs), and SSCs, 33 SSC-specific TFs and 958 targeting genes were obtained. RNA-seq and WGCNA revealed that the key modules (turquoise and red) were the most significantly related to 958 SSC-specific genes, and a total of 10 hub SSC-specific genes were identified. Next, when compared with the cell-specific TFs in human ESCs, PGCs, and SSCs, we obtained five overlapping SSC-specific TF motifs, including the NF1 family TF motifs (NFIA, NFIB, NFIC, and NFIX), GRE, Fox:Ebox, PGR, and ARE. Among these, Nfib and Nfix exhibited abnormally high expression levels relative to mouse ESCs and PGCs. Moreover, Nfib and Nfix were upregulated in the testis sample with impaired spermatogenesis when compared with the normal group. Finally, the ChIP-seq data results showed that NFIB most likely targeted the hub SSC-specific genes of the turquoise module (Rpl36al, Rps27, Rps21, Nedd8, and Sec61b) and the red module (Vcam1 and Ccl2). Conclusion: Our findings preliminarily revealed cell-specific TFs and cell-specific TF-mediated GRNs in the process of SSC formation. The hub SSC-specific genes and the key SSC-specific TFs were identified and suggested complex network regulation, which may play key roles in optimizing the induction efficiency of the differentiation of ESCs into SSCs in vitro.

8.
Environ Res ; 212(Pt A): 113176, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35364039

RESUMO

Sulfide generally exists in wastewater, black and odor river, as well as aquaculture water, and give rise to adverse effect on ecological stability and biological safety, due to the toxicity, corrosivity and malodor of sulfide. In the present study, a chemolithotrophic sulfide-oxidizing bacteria (SOB) was isolated and identified as Marinobacter maroccanus strain SDSWS8. And it produced no hemolysin and was susceptible to most antibiotics. There were no accumulation of sulfide, sulfate and thiosulfate during the sulfide removal process. The optimum conditions of sulfide removal were temperature 15-40 °C, initial pH value 4.5-9.5, salinity 10-40‰, C/N ratio 0-20 and sulfide concentration 25-150 mg/L. The key genes of sulfide oxidation, Sox system (soxB, soxX, soxA, soxZ, soxY, soxD, soxC), dissimilatory sulfur oxidation (dsrA, aprA and sat) and sqr, were successfully amplified and expressed, indicating the three pathways coordinated to complete the sulfide oxidation. Besides, strain SDSWS8 had inhibitory effect on four pathogen Vibrio (V. harveyi, V. parahaemolyticus, V. anguillarum and V. splendidus). Furthermore, efficient removal of sulfide from real aquaculture water and sludge mixture could be accomplished by strain SDSWS8. This study may provide a promising candidate strain for sulfide-rich water treatment.


Assuntos
Marinobacter , Bactérias/metabolismo , Marinobacter/genética , Marinobacter/metabolismo , Oxirredução , Sulfetos/toxicidade , Enxofre/metabolismo
9.
Sci Total Environ ; 758: 143580, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223174

RESUMO

Phosphorus (P) and nitrogen (N) pollution are the worldwide challenging problem. In the present study, a new salt-tolerant phosphate-accumulating organism (PAO) was isolated and identified as Bacillus subtilis GHSP10. Strain GHSP10 did not produce hemolysin and showed high susceptibility to antibiotics. The favorable phosphorus removal C/N ratios, P/N ratios, temperature, salinities, pH values and shaking speeds of strain GHSP10 were 10-20, 0.1-0.2, 28 °C, 0-3%, 7.5-8.5 and 100-250 r/min. Besides, strain GHSP10 could conduct heterotrophic nitrification-aerobic denitrification and the maximal removal efficiencies of ammonium, nitrite and nitrate were 99.52%, 81.10% and 95.84% respectively. Moreover, the phosphorus removal process of strain GHSP10 was achieved under entirely aerobic conditions, and glycogen and poly-ß-hydroxybutyrate could provide energy source for the phosphorus removal process of strain GHSP10. The amplification of ppk, hao, napA, narG, nirK genes as well as the expression of polyphosphate kinase helped to reveal the removal pathways of phosphorus and nitrogen, providing theoretical support for the phosphorus removal, nitrification and aerobic denitrification abilities of strain GHSP10. Furthermore, efficient removal of phosphorus and nitrogen from both domestic sewage and aquaculture sewage could be accomplished by strain GHSP10. This study may provide a hopeful candidate strain for simultaneous removal of phosphorus and nitrogen pollution from both freshwater sewage and saline sewage.


Assuntos
Nitrogênio , Fósforo , Aerobiose , Aquicultura , Reatores Biológicos , Desnitrificação , Nitrificação , Nitritos , Fosfatos , Esgotos
10.
Bioresour Technol ; 312: 123633, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32531738

RESUMO

A novel phosphate-accumulating organism (PAO), Arthrobacter sp. HHEP5 was isolated from mariculture effluents. It produced no hemolysin and was susceptible to most antibiotics. It had removal efficiencies of above 99% for 1-10 mg/L phosphorus at 18-28 °C, pH 5.5-8.5, salinities 0-3%, C/N ratios 5-20, P/N ratios 0.1-0.2 and 20-260 rpm. It exhibited simultaneous aerobic phosphorus removal, nitrification and denitrification with the highest ammonium, nitrite, nitrate removal efficiencies of 99.87%, 100%, 99.37%. Phosphorus removal was accomplished by assimilating phosphate with the existence of polyphosphate kinase completely under aerobic condition. Genes involved in nitrogen removal were amplified. 99% of phosphorus and 95% of nitrogen in both mariculture and domestic wastewater were removed by HHEP5. This study provided sound methods for future screening of PAOs and new perspectives for renewed cognition of phosphorus removal process. Wide adaptation and remarkably aerobic phosphorus, nitrogen removal performances would make HHEP5 a promising candidate in wastewater treatment.


Assuntos
Arthrobacter , Nitrificação , Aerobiose , Desnitrificação , Processos Heterotróficos , Nitritos , Nitrogênio , Fosfatos , Fósforo , Águas Residuárias
11.
BMC Neurol ; 19(1): 321, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830940

RESUMO

BACKGROUND: Spinal cord infarction (SCI) is rarely caused by vertebral artery dissection (VAD), which is an important cause of posterior circulation stroke in young and middle-aged patients. We report the case of a middle-aged patient without obvious risk factors for atherosclerosis who had SCI from right VAD. CASE PRESENTATION: An otherwise healthy 40-year-old man presented with acute right-sided body weakness. Six days earlier, he had experienced posterior neck pain without obvious inducement. Neurologic examination revealed a right Brown-Séquard syndrome. Magnetic resonance imaging (MRI) of the head was normal. Further, cervical spine MRI showed spinal cord infarction (SCI) on the right at the C1-C3 level. Three-dimensional high-resolution MRI (3D HR-MRI) volumetric isotropic turbo spin echo acquisition (VISTA) scan showed evidence of vertebral artery dissection (VAD). The patient was significantly relieved of symptoms and demonstrated negative imaging findings after therapy with anticoagulation (AC) and antiplatelets (AP) for 3 months. CONCLUSIONS: The possibility of vertebral artery dissection (VAD) should be considered in the case of young and middle-aged patients without obvious risk factors for atherosclerosis. Furthermore the VISTA black blood sequence plays an important role in the pathological diagnosis of vertebral artery stenosis. Early correct diagnosis and active therapy are crucial to the prognosis.


Assuntos
Síndrome de Brown-Séquard/etiologia , Infarto/etiologia , Medula Espinal/irrigação sanguínea , Dissecação da Artéria Vertebral/complicações , Adulto , Humanos , Masculino , Medula Espinal/patologia , Doenças da Medula Espinal/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...