Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 254: 112517, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460482

RESUMO

Developing new antimicrobials to combat drug-resistant bacterial infections is necessary due to the increasing problem of bacterial resistance. In this study, four metallic ruthenium complexes modified with benzothiazoles were designed, synthesized and subjected to bio-evaluated. Among them, Ru-2 displayed remarkable inhibitory activity against Staphylococcus aureus (S. aureus) with a minimum inhibitory concentration (MIC) of 1.56 µg/mL. Additionally, it showcased low hemolytic toxicity (HC50 > 200 µg/mL) and the ability to effectively eradicate S. aureus without fostering drug resistance. Further investigation into the antibacterial mechanism suggested that Ru-2 may target the phospholipid component of S. aureus, leading to the disruption of the bacterial cell membrane and subsequent leakage of cell contents (nucleic acid, protein, and ONPG), ultimately resulting in the death of the bacterial cell. In vivo studies, both the G. mellonella larvae and the mouse skin infection models were conducted, indicated that Ru-2 could potentially serve as a viable candidate for the treatment of S. aureus infection. It exhibited no toxic or side effects on normal tissues. The results suggest that benzothiazole-modified ruthenium complexes may have potential as membrane-active antimicrobials against drug-resistant bacterial infections.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Complexos de Coordenação , Staphylococcus aureus Resistente à Meticilina , Rutênio , Animais , Camundongos , Staphylococcus aureus , Rutênio/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Benzotiazóis/farmacologia , Complexos de Coordenação/farmacologia , Testes de Sensibilidade Microbiana
2.
Dalton Trans ; 52(28): 9757-9771, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37395360

RESUMO

Antibiotic abuse has caused the generation of drug-resistant bacteria and a series of infections induced by multidrug-resistant bacteria have become a threat to human health. Facing the failure of traditional antibiotics, antibacterial drugs with new molecular and action modes urgently need to be developed. In this study, ruthenium complexes containing coumarin were designed and synthesized. By altering the structure of the ancillary ligand, we explored the biological activities of four ruthenium complexes against Staphylococcus aureus. Among them, Ru(II)-1 with the best antibacterial activity (minimum inhibitory concentration: 1.56 µg mL-1) was used for further investigations. Surprisingly, Ru(II)-1 could significantly inhibit the formation of biofilm and hinder the development of drug-resistant bacteria. Besides, Ru(II)-1 also exhibited excellent biocompatibility. Antibacterial mechanism studies suggested that Ru(II)-1 could target the bacterial cell membrane and combine with the phospholipid component of the membrane (phosphatidylglycerol and phosphatidylethanolamine) and generate reactive oxygen species to induce an oxidative stress response, which resulted in the damage of membrane integrity, finally leading bacteria death. Moreover, antibacterial tests in G. mellonella larvae and mice in vivo model indicated that Ru(II)-1 had the potential to combat S. aureus infection. Therefore, all the above results showed that ruthenium complexes modified with coumarin could be a promising antibacterial agent to tackle bacterial infection problems.


Assuntos
Complexos de Coordenação , Infecções por Bactérias Gram-Positivas , Rutênio , Animais , Humanos , Camundongos , Staphylococcus aureus , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Testes de Sensibilidade Microbiana , Cumarínicos/farmacologia
3.
Dalton Trans ; 52(25): 8737-8746, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37313713

RESUMO

Bacterial infection is one of the most serious public health problems, being harmful to human health and expensive. Nowadays, the misuse and overuse of antibiotics have led to the emergence of drug resistance. Therefore, it is an urgent need to develop new antimicrobial agents to address the current situation. In this study, four 1,2,4-triazole ruthenium polypyridine complexes [Ru(bpy)2(TPIP)](PF6)2 (Ru1), [Ru(dmb)2(TPIP)](PF6)2 (Ru2), [Ru(dtb)2(TPIP)](PF6)2 (Ru3) and [Ru(dmob)2(TPIP)](PF6)2 (Ru4) (bpy = 2,2'-bipyridine, dmb = 4,4'-dimethyl-2,2'-bipyridine, dtb = 4,4'-di-tert-butyl-2,2'-bipyridine, dmob = 4,4'-dimethoxy-2,2'-bipyridine and TPIP = 2-(4-(1H-1,2,4-triazol-1-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and evaluated for antibacterial activity. Results showed that the minimum inhibitory concentration (MIC) value of Ru3 against Staphylococcus aureus (S. aureus) was only 0.78 µg mL-1, showing the best antimicrobial activity in vitro. Besides, Ru3 showed low hemolytic activity and good biocompatibility. Due to its ability to damage the cell membrane of Staphylococcus bacteria, Ru3 was able to kill bacteria in a short time. Importantly, by inhibiting bacterial toxins and the formation of biofilm, Ru3 was not susceptible to the development of drug resistance. Moreover, Ru3 revealed excellent therapeutic effects in vivo and showed no irritation to the skin of mice. In conclusion, the four obtained 1,2,4-triazole ruthenium polypyridine complexes show strong antibacterial activity and satisfactory biocompatibility with excellent potential for antibacterial treatment, and provide a new solution for the current antibacterial crisis.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Camundongos , Animais , Humanos , Staphylococcus aureus , Rutênio/farmacologia , Antibacterianos/farmacologia , 2,2'-Dipiridil/farmacologia , Complexos de Coordenação/farmacologia , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...