Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 138(19): 194907, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23697441

RESUMO

Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (T(g)) have been investigated using solid-state nuclear magnetic resonance. Experiments detecting (13)C with (1)H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) (1)H-(13)C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and (1)H spin-lattice relaxation rate measurements. Previous (1)H and (7)Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of (13)C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time (1)H-(13)C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from (1)H to (13)C nuclei, becomes similar for T≳1.1 T(g) in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for the dependence of backbone dynamics on cation density (and here, cation identity as well) in these amorphous PEO-based ionomer systems.


Assuntos
Ésteres/química , Lítio/química , Polietilenoglicóis/química , Sódio/química , Ácidos Sulfônicos/química , Termodinâmica , Espectroscopia de Ressonância Magnética , Estrutura Molecular
2.
J Chem Phys ; 136(1): 014510, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22239792

RESUMO

Nuclear magnetic resonance spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. (1)H and (7)Li spin-lattice relaxation times (T(1)) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T(1) values along with the presence of minima in T(1) as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though lithium hopping is about ten times slower than the segmental motion. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and quasi-elastic neutron scattering experiments.


Assuntos
Ésteres/química , Éteres/química , Lítio/química , Simulação de Dinâmica Molecular , Polietilenoglicóis/química , Ácidos Sulfônicos/química , Espectroscopia de Ressonância Magnética , Estereoisomerismo
3.
J Chem Phys ; 130(6): 064907, 2009 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-19222298

RESUMO

We investigate the segmental and local dynamics as well as the transport of Li(+) cations in a series of model poly(ethylene oxide)-based single-ion conductors with varying ion content, using dielectric relaxation spectroscopy. We observe a slowing down of segmental dynamics and an increase in glass transition temperature above a critical ion content, as well as the appearance of an additional relaxation process associated with rotation of ion pairs. Conductivity is strongly coupled to segmental relaxation. For a fixed segmental relaxation frequency, molar conductivity increases with increasing ion content. A physical model of electrode polarization is used to separate ionic conductivity into the contributions of mobile ion concentration and ion mobility, and a model for the conduction mechanism involving transient triple ions is proposed to rationalize the behavior of these quantities as a function of ion content and the measured dielectric constant.

4.
J Chem Phys ; 124(14): 144903, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16626241

RESUMO

A novel method is presented whereby the parameters quantifying the conductivity of an ionomer can be extracted from the phenomenon of electrode polarization in the dielectric loss and tan delta planes. Mobile ion concentrations and ion mobilities were determined for a poly(ethylene oxide)-based sulfonated ionomer with Li(+), Na(+), and Cs(+) cations. The validity of the model was confirmed by examining the effects of sample thickness and temperature. The Vogel-Fulcher-Tammann (VFT)-type temperature dependence of conductivity was found to arise from the Arrhenius dependence of ion concentration and VFT behavior of mobility. The ion concentration activation energy was found to be 25.2, 23.4, and 22.3+/-0.5 kJmol for ionomers containing Li(+), Na(+), and Cs(+), respectively. The theoretical binding energies were also calculated and found to be approximately 5 kJmol larger than the experimental activation energies, due to stabilization by coordination with polyethylene glycol segments. Surprisingly, the fraction of mobile ions was found to be very small, <0.004% of the cations in the Li(+) ionomer at 20 degrees C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...