Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 378(1-2): 291-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23529546

RESUMO

Mesalamine (5-aminosalicylic acid, 5-ASA) is known to be the first-line medication for treatment of patients with ulcerative colitis. Studies have demonstrated that ulcerative colitis patients treated with 5-ASA have an overall decrease in the risk of developing colorectal carcinoma. However, the mechanisms underlying 5-ASA-mediated anti-inflammatory and anti-cancer effects are yet to be elucidated. Because peroxynitrite has been critically involved in inflammatory stress and carcinogenesis, this study was undertaken to investigate the effects of 5-ASA in peroxynitrite-induced DNA strand breaks, an important event leading to peroxynitrite-elicited cytotoxicity. Incubation of φX-174 plasmid DNA with the peroxynitrite generator 3-morpholinosydnonimine (SIN-1) led to the formation of both single- and double-stranded DNA breaks in a concentration-dependent manner. The presence of 5-ASA at 0.1 and 1.0 mM was found to significantly inhibit SIN-1-induced DNA strand breaks in a concentration-dependent manner. The consumption of oxygen induced by SIN-1 was found to not be affected by 5-ASA at 0.1-50 mM, indicating that 5-ASA at these concentrations is not involved in the auto-oxidation of SIN-1 to form peroxynitrite. It is observed that 5-ASA at 0.1-1 mM showed considerable inhibition of peroxynitrite-mediated luminol chemiluminescence in a dose-dependent fashion, suggesting that 5-ASA is able to directly scavenge the peroxynitrite. Electron paramagnetic resonance (EPR) spectroscopy in combination with spin-trapping experiments, using 5,5-dimethylpyrroline-N-oxide (DMPO) as spin trap resulting in the formation of DMPO-hydroxyl radical adduct from peroxynitrite, and 5-ASA only at higher concentration (1 mM) inhibited the hydroxyl radical adduct while shifting EPR spectra, indicating that 5-ASA at higher concentrations may generate a more stable free radical species rather than acting purely as a hydroxyl radical scavenger. Taken together, these studies demonstrate for the first time that 5-ASA can potently inhibit peroxynitrite-mediated DNA strand breakage, scavenge peroxynitrite, and affect peroxynitrite-mediated radical formation, which may be responsible, at least partially, for its anti-inflammatory and anti-cancer effects.


Assuntos
Anti-Inflamatórios/química , Anticarcinógenos/química , Radicais Livres/química , Mesalamina/química , Ácido Peroxinitroso/química , Bacteriófago phi X 174/genética , Colite Ulcerativa/complicações , Colite Ulcerativa/tratamento farmacológico , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/prevenção & controle , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , DNA Viral/genética , Espectroscopia de Ressonância de Spin Eletrônica , Sequestradores de Radicais Livres/química , Humanos , Oxirredução , Oxigênio/química , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...