Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(17): 11835-11844, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570347

RESUMO

Circularly polarized light emission is a crucial application in imaging, sensing, and photonics. However, utilizing low-energy photons to excite materials, as opposed to high-energy light excitation, can facilitate deep-tissue imaging and sensing applications. The challenge lies in finding materials capable of directly generating circularly polarized nonlinear optical effects. In this study, we introduce a chiral hybrid lead halide (CHLH) material system, R/S-DPEDPb3Br8·H2O (DPED = 1,2-diphenylethylenediammonium), which can directly produce circularly polarized second harmonic generation (CP-SHG) through linearly polarized infrared light excitation, exhibiting a polarization efficiency as high as 37% at room temperature. To understand the spin relaxation mechanisms behind the high polarization efficiency, we utilized two models, so-called D'yakonov-Perel' (DP) and Bir-Aronov-Pikus (BAP) mechanisms. The unique zigzag inorganic frameworks within the hybrid structure are believed to reduce the dielectric confinement and exciton binding energy, thus enhancing spin polarization, especially in regions with a high excitation pump fluence based on the DP mechanism. In the case of low excitation pump fluence, the BAP mechanism dominates, as evidenced by the observed decrease in the polarization ratio from CP-SHG measurement. Using density functional theory analysis, we elucidate how the distinctive 8-coordination environment of lead bromide building blocks effectively suppresses spin-orbit coupling at the conduction band minimum. This suppression significantly diminishes spin-splitting, thereby slowing the spin relaxation rate.

2.
Heliyon ; 10(6): e28139, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545173

RESUMO

Background: The benefits of hyperbaric oxygen (HBO) in treating animals with heat stroke (HS) have been established. This study aims to retrospectively analyze the effect of HBO on multiple organ dysfunction following HS in humans. Methods: Retrospective data were collected from patients with HS admitted to our hospital in the past 7 years. Patients were categorized into groups based on whether they received HBO therapy. The study compared various factors, including sequential organ failure assessment (SOFA) and acute physiology and chronic health evaluation-Ⅱ (APACHE-Ⅱ) scores, mortality rates, neurological function scores, serum myocardial enzyme levels, liver, kidney, and coagulation function indicators, blood routine results, electrolyte levels, and modified Barthel index (MBI) score for standard daily living ability before treatment and after 2 and 4 weeks of treatment. Results: The mortality rates in the HBO and control group were 0% and 8.49%, respectively. Upon admission, the HBO group had higher SOFA and APACHE-Ⅱ scores and lower neurological, coagulation, and liver functions than those of the control group. HBO treatment significantly improved SOFA, APACHE-Ⅱ, and neurological scores while relieving levels of alanine aminotransferase, aspartate aminotransferase, creatinine, and myocardial enzymes. Additionally, it mitigating lymphocyte and platelet count decline caused by HS. The MBI score was significantly enhanced after treatment in the HBO group. Conclusions: Clinical practice advocates administering HBO therapy to patients with severe illness, organ damage, and nerve impairment. Compared with conventional treatment, combined HBO therapy demonstrated superior efficacy in alleviating multiple organ dysfunction and improving daily living ability in patients with HS.

3.
J Am Chem Soc ; 146(13): 8971-8980, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38393312

RESUMO

Nonlinear optical (NLO) switching materials, which exhibit reversible intensity modulation in response to thermal stimuli, have found extensive applications across diverse fields including sensing, photoelectronics, and photonic applications. While significant progress has been made in solid-state NLO switching materials, these materials typically showcase their highest NLO performance near room temperature. However, this performance drastically deteriorates upon heating, primarily due to the phase transition undergone by the materials from noncentrosymmetric to centrosymmetric phase. Here, we introduce a new class of NLO switching materials, solid-state supramolecular compounds 18-Crown-6 ether@Cu2Cl4·4H2O (1·4H2O), exhibiting reversible and stable NLO switching when subjected to near-infrared (NIR) photoexcitation and/or thermal stimuli. The reversible crystal structure in response to external stimuli is attributed to the presence of a weakly coordinated bridging water molecule facilitated by hydrogen bonding/chelation interactions between the metal halide and crown-ether supramolecules. We observed an exceptionally high second-harmonic generation (SHG) signal under continuous photoexcitation, even at temperatures exceeding 110 °C. In addition, the bridging water molecules within the complex can be released and recaptured in a fully reversible manner, all without requiring excessive energy input. This feature allows for precise control of SHG signal activation and deactivation through structural transformations, resulting in a high-contrast off/on ratio, reaching values in the million-fold range.

4.
Huan Jing Ke Xue ; 44(9): 4896-4905, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699808

RESUMO

To understand the heavy metal pollution status of Dongjiang Lake, the contents and species of heavy metals in the surface sediments were investigated during September 2021, and the heavy metal pollution level and potential ecological risk were evaluated. The results showed that Cd, Pb, As, Cu, Zn, Ni, and Cr contents were in the range of 0.40-34.1, 14.8-1688, 6.99-1155, 6.89-280, 26.2-1739, 6.29-55.4, and 23.3-44.8 mg·kg-1, respectively, with extremely uneven spatial distributions. The highest contents of Cd, Pb, As, Zn, Cu, and Ni were found in the site adjacent to Yaogangxian tungsten ore. The proportion of metal species with bioavailability was high, in which Cd in acid-soluble species was 46.7%-71.5% and Pb in reducible species was 46.8%-67.0%. The bioavailable species of Cu, Zn, Ni, and Cr were 35%-68%, 42%-72%, 26%-51%, and 6%-30%, respectively, although they primarily existed in residual species. According to the geo-accumulation index (Igeo), there was a moderate or extreme pollution status of Cd in all sites, moderate or extreme pollution status of Pb in 90% of sites, and moderate pollution status of As, Cu, and Zn in 30% of sites. The ecological risk factor (Eri) of Cd showed high potential ecological risk in all sites with significantly high potential ecological risk in 80% of sites. Moreover, As and Pb had significantly high potential ecological risk, and Cu had moderate potential ecological risk in S7, which was adjacent to Yaogangxian tungsten ore. There was a high total potential ecological risk in all sites and significantly high potential ecological risk in 50% of sites. Therefore, the surface sediments of Dongjiang Lake were under the combined pollution of Cd, Pb, As, Zn, and Cu with high bioavailability and high total potential ecological risk.

5.
J Am Chem Soc ; 145(32): 18007-18014, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37540785

RESUMO

Achromatic quarter waveplates (A-QWPs), traditionally constructed from multiple birefringent crystals, can modulate light polarization and retardation across a broad range of wavelengths. This mechanism is inherently related to phase retardation controlled by the fast and slow axis of stacked multi-birefringent crystals. However, the conventional design of A-QWPs requires the incorporation of multiple birefringent crystals, which complicates the manufacturing process and raises costs. Here, we report the discovery of a broadband (540-1060 nm) A-QWP based on a two-dimensional (2D) layered hybrid copper halide (HCH) perovskite single crystal. The 2D copper chloride (CuCl6) layers of the HCH crystal undergo Jahn-Teller distortion and subsequently trigger the in-plane optical birefringence. Its broad range of the wavelength response as an A-QWP is a consequence of the out-of-plane mosaicity formed among the stacked inorganic layers during the single-crystal self-assembly process in the solution phase. Given the versatility of 2D hybridhalide perovskites, the 2D HCH crystal offers a promising approach for designing cost-effective A-QWPs and the ability to integrate other optical devices.

6.
J Phys Chem Lett ; 12(49): 11894-11901, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34878274

RESUMO

This paper reports packing-shape effects of amplified spontaneous emission (ASE) through orbital polarization dynamics between light-emitting excitons by stacking perovskite (MAPbBr3) quantum dots (QDs sized between 10 nm and 14 nm) into rod-like and diamond-like aggregates. The rod-like packing shows a prolonged photoluminescence (PL) lifetime (184 ns) with 3 nm red-shifted peak (525 nm) as compared to the diamond-like packing (PL peak, 522 nm; lifetime, 19 ns). This indicates that the rod-like packing forms a stronger interaction between QDs with reduced surface-charged defects, leading to surface-to-inside property-tuning capability with an ASE. Interestingly, the ASE enabled by rod-like packing shows an orbit-orbit polarization interaction between light-emitting excitons, identified by linearly/circularly polarized pumping conditions. More importantly, the polarization dynamics is extended to the order of nanoseconds in the rod-like assembly, determined by the observation that within the ASE lifetime (2.54 ns) the rotating pumping beam polarization direction largely affects the coherent interaction between light-emitting excitons.

7.
Nat Commun ; 12(1): 3485, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108487

RESUMO

When periodically packing the intramolecular donor-acceptor structures to form ferroelectric-like lattice identified by second harmonic generation, our CD49 molecular crystal shows long-wavelength persistent photoluminescence peaked at 542 nm with the lifetime of 0.43 s, in addition to the short-wavelength prompt photoluminescence peaked at 363 nm with the lifetime of 0.45 ns. Interestingly, the long-wavelength persistent photoluminescence demonstrates magnetic field effects, showing as crystalline intermolecular charge-transfer excitons with singlet spin characteristics formed within ferroelectric-like lattice based on internal minority/majority carrier-balancing mechanism activated by isomer doping effects towards increasing electron-hole pairing probability. Our photoinduced Raman spectroscopy reveals the unusual slow relaxation of photoexcited lattice vibrations, indicating slow phonon effects occurring in ferroelectric-like lattice. Here, we show that crystalline intermolecular charge-transfer excitons are interacted with ferroelectric-like lattice, leading to exciton-lattice coupling within periodically packed intramolecular donor-acceptor structures to evolve ultralong-lived crystalline light-emitting states through slow phonon effects in ferroelectric light-emitting organic crystal.

8.
Angew Chem Int Ed Engl ; 60(5): 2446-2454, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089921

RESUMO

Long-lived room temperature phosphorescence from organic molecular crystals attracts great attention. Persistent luminescence depends on the electronic properties of the molecular components, mainly π-conjugated donor-acceptor (D-A) chromophores, and their molecular packing. Here, a strategy is developed by designing two isomeric molecular phosphors incorporating and combining a bridge for σ-conjugation between the D and A units and a structure-directing unit for H-bond-directed supramolecular self-assembly. Calculations highlight the critical role played by the two degrees of freedom of the σ-conjugated bridge on the chromophore optical properties. The molecular crystals exhibit RTP quantum yields up to 20 % and lifetimes up to 520 ms. The crystal structures of the efficient phosphorescent materials establish the existence of an unprecedented well-organization of the emitters into 2D rectangular columnar-like supramolecular structure stabilized by intermolecular H-bonding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...