Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(11): 14055-14063, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457210

RESUMO

Fabrication of large-sized inorganic nanosheets is an efficient strategy to promote carrier transportation in flexible thermoelectric (TE) films. Herein, we report the self-assembly of large-sized Cu3SbSe4 nanosheets by using a Se nanowire template via wet chemical synthesis and then vacuum-assisted filter these plate-like microcrystals on nylon to prepare Cu3SbSe4 flexible thermoelectric (TE) hybrid films. SEM reveals that the as-synthesized Cu3SbSe4 powders by using Se nanowires as selenium sources presented 2D plate-like micron structures uniformly and tightly self-assembled by acute triangle-like nanoparticles. Furthermore, XPS evidences that extra Sb vacancies are generated in the unit cell of Cu3SbSe4 crystals synthesized by using the Se NW template, resulting in the shrinkage of the unit cell and the narrowing interplanar spacing, which are characterized by XRD and TEM. As a result, both carrier concentration and carrier mobility have been significantly improved. The high carrier concentration is proved to originate from the extra carriers induced by Sb vacancies, and the high carrier mobility of the film is mainly ascribed to its continuous grain boundaries in the plate-like microcrystal morphology. The large-sized nanosheet Cu3SbSe4/nylon hybrid film (CSS MPs) exhibits a high power factor (PF) of 235.45 µW m-1 K-2 at 400 K, which is 4.23 times higher than that of the Cu3SbSe4/nylon hybrid film (CSS NPs) where Cu3SbSe4 crystals are synthesized by using raw Se particles. This work reveals a novel approach to prepare plate-like Se-based semiconductors, which requires both high carrier concentration and high carrier mobility.

2.
ACS Appl Mater Interfaces ; 15(30): 36457-36467, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37470782

RESUMO

n-Type Bi2Te2.7Se0.3 (BTS) is the state-of-the-art thermoelectric material near room temperature. However, the figure of merit ZT of commercial BTS ingots is still limited and further improvement is imperative for their wide applications. Here, the results show that through dispersion of the Ag2Te nanophase in BTS, one can not only elevate its power factor (PF) by as high as 14% (at 300 K) but also reduce its thermal conductivity κtot to as small as ∼29% (at 300 K). Experimental evidences show that the improved PF comes from both increased electron mobility via inhibited Te vacancies and enhanced thermopower due to energy filtering effect, while the reduction of κtot originates from the drop of both electronic thermal conductivity largely owing to the reduced number of vacancy VTe·· and intensified phonon scattering chiefly from the dispersed Ag2Te nanophase. Consequently, the largest ZTmax = 1.31 (at 350 K) and average ZTave = 1.16 (300-500 K) are achieved for the Bi2Te2.7Se0.3-0.3 wt % Ag2Te composite sample, leading to a projected conversion efficiency η = 8.3% (300-500 K). The present results demonstrate that incorporation of nanophase Ag2Te is an effective approach to boosting the thermoelectric performance of BTS.

3.
Polymers (Basel) ; 10(10)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30961068

RESUMO

Polypyrrole (PPy) with different morphologies (e.g., particles, nanotubes, and nanowires) were successfully prepared by adding or without adding different kinds of surfactants through a chemical oxidative polymerization method, respectively. The results show that the morphologies of PPy can be effectively controlled and have a significantly effects on their thermoelectric properties. The PPy nanowires exhibit the highest electrical conductivity and Seebeck coefficient among the various PPy morphologies, such as particles, nanotubes, and nanowires, so PPy nanowires were chosen to prepare PPy nanowire/graphene thermoelectric composites via a soft template polymerization method using cetyltrimethyl ammonium bromide as the template. Both electrical conductivity and Seebeck coefficient of the PPy nanowire/graphene composites increased as the content of graphene increases from 0 to 20 wt %, and as the measured temperature increases from 300 K to 380 K, which leds to the same trend for the power factor. A highest power factor of 1.01 µWm-1K-2 at ~380 K was obtained for the PPy nanowire/graphene composites with 20 wt % PPy nanowire, which is about 3.3 times higher than that of the pure PPy nanowire.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...