Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 7(12): 894-901, 2011 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22002719

RESUMO

Microbes survive in a variety of nutrient environments by modulating their intracellular metabolism. Balanced growth requires coordinated uptake of carbon and nitrogen, the primary substrates for biomass production. Yet the mechanisms that balance carbon and nitrogen uptake are poorly understood. We find in Escherichia coli that a sudden increase in nitrogen availability results in an almost immediate increase in glucose uptake. The concentrations of glycolytic intermediates and known regulators, however, remain homeostatic. Instead, we find that α-ketoglutarate, which accumulates in nitrogen limitation, directly blocks glucose uptake by inhibiting enzyme I, the first step of the sugar-phosphoenolpyruvate phosphotransferase system (PTS). This inhibition enables rapid modulation of glycolytic flux without marked changes in the concentrations of glycolytic intermediates by simultaneously altering import of glucose and consumption of the terminal glycolytic intermediate phosphoenolpyruvate. Quantitative modeling shows that this previously unidentified regulatory connection is, in principle, sufficient to coordinate carbon and nitrogen utilization.


Assuntos
Carbono/metabolismo , Inibidores Enzimáticos/farmacologia , Ácidos Cetoglutáricos/farmacologia , Nitrogênio/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/antagonistas & inibidores , Biomassa , Carbono/química , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Glucose/antagonistas & inibidores , Glucose/metabolismo , Ácidos Cetoglutáricos/química , Nitrogênio/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Relação Estrutura-Atividade
2.
Mol Syst Biol ; 5: 302, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19690571

RESUMO

Despite extensive study of individual enzymes and their organization into pathways, the means by which enzyme networks control metabolite concentrations and fluxes in cells remains incompletely understood. Here, we examine the integrated regulation of central nitrogen metabolism in Escherichia coli through metabolomics and ordinary-differential-equation-based modeling. Metabolome changes triggered by modulating extracellular ammonium centered around two key intermediates in nitrogen assimilation, alpha-ketoglutarate and glutamine. Many other compounds retained concentration homeostasis, indicating isolation of concentration changes within a subset of the metabolome closely linked to the nutrient perturbation. In contrast to the view that saturated enzymes are insensitive to substrate concentration, competition for the active sites of saturated enzymes was found to be a key determinant of enzyme fluxes. Combined with covalent modification reactions controlling glutamine synthetase activity, such active-site competition was sufficient to explain and predict the complex dynamic response patterns of central nitrogen metabolites.


Assuntos
Amônia/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Metabolômica/métodos , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Técnicas Genéticas , Glutamina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Espectrometria de Massas/métodos , Metaboloma , Modelos Genéticos , Nitrogênio/metabolismo , Compostos de Amônio Quaternário , Biologia de Sistemas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...