Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-17381283

RESUMO

Dicer is a specialized ribonuclease that processes double-stranded RNA (dsRNA) into small RNA fragments about 25 nucleotides in length during the initiation phase of RNA interference (RNAi). We previously determined the crystal structure of a Dicer enzyme from the diplomonad Giardia intestinalis and proposed a structural model for dsRNA processing. Here, we provide evidence that Dicer is composed of three structurally rigid regions connected by flexible hinges and propose that conformational flexibility facilitates dsRNA binding and processing. We also examine the role of the accessory domains found in Dicers of higher eukaryotes but absent in Giardia Dicer. Finally, we combine the structure of Dicer with published biochemical data to propose a model for the architecture of the RNA-induced silencing complex (RISC)-loading complex.


Assuntos
Giardia lamblia/enzimologia , Giardia lamblia/genética , Interferência de RNA , Ribonuclease III/química , Ribonuclease III/metabolismo , Animais , Teste de Complementação Genética , Humanos , Técnicas In Vitro , Modelos Biológicos , Modelos Moleculares , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonuclease III/genética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética
3.
J Am Chem Soc ; 123(35): 8447-52, 2001 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-11525650

RESUMO

Hepatitis delta virus ribozymes have been proposed to perform self-cleavage via a general acid/base mechanism involving an active-site cytosine, based on evidence from both a crystal structure of the cleavage product and kinetic measurements. To determine whether this cytosine (C75) in the genomic ribozyme has an altered pK(a) consistent with its role as a general acid or base, we used (13)C NMR to determine its microscopic pK(a) in the product form of the ribozyme. The measured pK(a) is moderately shifted from that of a free nucleoside or a base-paired cytosine and has the same divalent metal ion dependence as the apparent reaction pK(a)'s measured kinetically. However, under all conditions tested, the microscopic pK(a) is lower than the apparent reaction pK(a), supporting a model in which C75 is deprotonated in the product form of the ribozyme at physiological pH. While additional results suggest that the pK(a) is not shifted in the reactant state of the ribozyme, these data cannot rule out elevation of the C75 pK(a) in an intermediate state of the transesterification reaction.


Assuntos
Citosina/metabolismo , Vírus Delta da Hepatite/enzimologia , RNA Catalítico/metabolismo , Sequência de Bases , Sítios de Ligação , Isótopos de Carbono , Citosina/química , Vírus Delta da Hepatite/genética , Cinética , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , RNA Catalítico/química , RNA Catalítico/genética , Especificidade por Substrato
4.
Artigo em Inglês | MEDLINE | ID: mdl-11441810

RESUMO

The past few years have seen exciting advances in understanding the structure and function of catalytic RNA. Crystal structures of several ribozymes have provided detailed insight into the folds of RNA molecules. Models of other biologically important RNAs have been constructed based on structural, phylogenetic, and biochemical data. However, many questions regarding the catalytic mechanisms of ribozymes remain. This review compares the structures and possible catalytic mechanisms of four small self-cleaving RNAs: the hammerhead, hairpin, hepatitis delta virus, and in vitro-selected lead-dependent ribozymes. The organization of these small catalysts is contrasted to that of larger ribozymes, such as the group I intron.


Assuntos
RNA Catalítico/química , RNA/química , RNA/metabolismo , Animais , Catálise , Modelos Químicos , Estrutura Secundária de Proteína , Splicing de RNA , Tetrahymena/metabolismo
5.
Biotechniques ; 30(3): 544-6, 548, 550 passim, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11252791

RESUMO

Tobacco etch virus NIa proteinase (NIa-Pro) has become the enzyme of choice for removing tags and fusion domains from recombinant proteins in vitro. We have designed a mutant NIa-Pro that resists autoproteolytic inactivation and present an efficient method for producing large amounts of this enzyme that is highly pure, active, and stable over time. Histidine-tagged forms of both wild-type and mutant NIa-Pro were overexpressed in E. coli under conditions in which greater than 95% of the protease was in the insoluble fraction after cell lysis. An inclusion body preparation followed by denaturing purification over a single affinity column and protein renaturation yields greater than 12.5 mg enzyme per liter of bacterial cell culture. NIa-Pro purified according to this protocol has been used for quantitative removal of fusion domains from a variety of proteins prepared for crystallization and biochemical analysis.


Assuntos
Endopeptidases/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Proteínas Virais/isolamento & purificação , Endopeptidases/metabolismo , Proteínas Virais/metabolismo
6.
RNA ; 7(2): 194-206, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11233977

RESUMO

Many viruses and certain cellular mRNAs initiate protein synthesis from a highly structured RNA sequence in the 5' untranslated region, called the internal ribosome entry site (IRES). In hepatitis C virus (HCV), the IRES RNA functionally replaces several large initiation factor proteins by directly recruiting the 43S particle. Using quantitative binding assays, modification interference of binding, and chemical and enzymatic footprinting experiments, we show that three independently folded tertiary structural domains in the IRES RNA make intimate contacts to two purified components of the 43S particle: the 40S ribosomal subunit and eukaryotic initiation factor 3 (eIF3). We measure the affinity and demonstrate the specificity of these interactions for the first time and show that the high affinity interaction of IRES RNA with the 40S subunit drives formation of the IRES RNA-40S-eIF3 ternary complex. Thus, the HCV IRES RNA recruits 43S particles in a mode distinct from both eukaryotic cap-dependent and prokaryotic ribosome recruitment strategies, and is architecturally and functionally unique from other large folded RNAs that have been characterized to date.


Assuntos
Hepacivirus/genética , RNA Viral/análise , RNA Viral/metabolismo , Ribossomos/metabolismo , Animais , Sequência de Bases , Domínio Catalítico , Códon de Iniciação , Primers do DNA/química , Fator de Iniciação 3 em Eucariotos , Hepacivirus/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Fosfatos/química , Mutação Puntual , Poliovirus/genética , Reação em Cadeia da Polimerase , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Coelhos , Reticulócitos/metabolismo , Ribonuclease T1/genética , Ribonuclease T1/metabolismo , Ribossomos/química , Ribossomos/genética , Transcrição Gênica
7.
Nat Struct Biol ; 8(4): 339-43, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11276255

RESUMO

RNA molecules fold into specific three-dimensional shapes to perform structural and catalytic functions. Large RNAs can form compact globular structures, but the chemical basis for close helical packing within these molecules has been unclear. Analysis of transfer, catalysis, in vitro-selected and ribosomal RNAs reveal that helical packing predominantly involves the interaction of single-stranded adenosines with a helix minor groove. Using the Tetrahymena thermophila group I ribozyme, we show here that the near-perfect shape complementarity between the adenine base and the minor groove allows for optimal van der Waals contacts, extensive hydrogen bonding and hydrophobic surface burial, creating a highly energetically favorable interaction. Adenosine is recognized in a chemically similar fashion by a combination of protein and RNA components in the ribonucleoprotein core of the signal recognition particle. These results provide a thermodynamic explanation for the noted abundance of conserved adenosines within the unpaired regions of RNA secondary structures.


Assuntos
Conformação de Ácido Nucleico , RNA Catalítico/química , RNA Catalítico/metabolismo , Tetrahymena thermophila/genética , Adenosina/genética , Adenosina/metabolismo , Animais , Sequência Conservada/genética , Vírus Delta da Hepatite/enzimologia , Vírus Delta da Hepatite/genética , Ligação de Hidrogênio , Modelos Moleculares , Filogenia , Ligação Proteica , Sondas RNA/química , Sondas RNA/genética , Sondas RNA/metabolismo , RNA Catalítico/genética , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética , Especificidade por Substrato , Tetrahymena thermophila/enzimologia , Termodinâmica
8.
Science ; 291(5510): 1959-62, 2001 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-11239155

RESUMO

Initiation of protein synthesis in eukaryotes requires recruitment of the 40S ribosomal subunit to the messenger RNA (mRNA). In most cases, this depends on recognition of a modified nucleotide cap on the 5' end of the mRNA. However, an alternate pathway uses a structured RNA element in the 5' untranslated region of the messenger or viral RNA called an internal ribosomal entry site (IRES). Here, we present a cryo-electron microscopy map of the hepatitis C virus (HCV) IRES bound to the 40S ribosomal subunit at about 20 A resolution. IRES binding induces a pronounced conformational change in the 40S subunit and closes the mRNA binding cleft, suggesting a mechanism for IRES-mediated positioning of mRNA in the ribosomal decoding center.


Assuntos
Regiões 5' não Traduzidas/metabolismo , Hepacivirus/metabolismo , RNA Viral/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Regiões 5' não Traduzidas/química , Animais , Sequência de Bases , Microscopia Crioeletrônica , Hepacivirus/genética , Hepacivirus/ultraestrutura , Processamento de Imagem Assistida por Computador , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/química , RNA Ribossômico 18S/metabolismo , RNA Viral/química , Coelhos , Ribossomos/ultraestrutura
9.
J Mol Biol ; 307(1): 229-46, 2001 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-11243816

RESUMO

The signal recognition particle (SRP) is a ribonucleoprotein complex responsible for targeting proteins to the endoplasmic reticulum in eukarya or to the inner membrane in prokarya. The crystal structure of the universally conserved RNA-protein core of the Escherichia coli SRP, refined here to 1.5 A resolution, revealed minor groove recognition of the 4.5 S RNA component by the M domain of the Ffh protein. Within the RNA, nucleotides comprising two phylogenetically conserved internal loops create a unique surface for protein recognition. To determine the energetic importance of conserved nucleotides for SRP assembly, we measured the affinity of the M domain for a series of RNA mutants. This analysis reveals how conserved nucleotides within the two internal loop motifs establish the architecture of the macromolecular interface and position essential functional groups for direct recognition by the protein.


Assuntos
Conformação de Ácido Nucleico , RNA Ribossômico/química , Partícula de Reconhecimento de Sinal/química , Sequência Conservada , Cristalização , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , RNA Bacteriano , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
RNA ; 7(1): 123-32, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11214174

RESUMO

Replication-dependent histone mRNAs end in a highly conserved 26-nt stem-loop structure. The stem-loop binding protein (SLBP), an evolutionarily conserved protein with no known homologs, interacts with the stem-loop in both the nucleus and cytoplasm and mediates nuclear-cytoplasmic transport as well as 3'-end processing of the pre-mRNA by the U7 snRNP. Here, we examined the affinity and specificity of the SLBP-RNA interaction. Nitrocellulose filter-binding experiments showed that the apparent equilibrium dissociation constant (Kd) between purified SLBP and the stem-loop RNA is 1.5 nM. Binding studies with a series of stem-loop variants demonstrated that conserved residues in the stem and loop, as well as the 5' and 3' flanking regions, are required for efficient protein recognition. Deletion analysis showed that 3 nt 5' of the stem and 1 nt 3' of the stem contribute to the binding energy. These data reveal that the high affinity complex between SLBP and the RNA involves sequence-specific contacts to the loop and the top of the stem, as well the base of the stem and its immediate flanking sequences. Together, these results suggest a novel mode of protein-RNA recognition that forms the core of a ribonucleoprotein complex central to the regulation of histone gene expression.


Assuntos
Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Xenopus , Fatores de Poliadenilação e Clivagem de mRNA , Animais , Sequência de Bases , Sítios de Ligação , Calorimetria , Linhagem Celular , Sequência Consenso , Histonas/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribossomos/metabolismo , Spodoptera , Termodinâmica , Transfecção , Xenopus
11.
Curr Protoc Nucleic Acid Chem ; Chapter 7: Unit 7.6, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-18428874

RESUMO

Preparation of suitably large and well-ordered single crystals is usually the rate-limiting step in the determination of the three-dimensional structure of RNAs and their complexes with proteins by X-ray crystallography. This unit discusses a variety of experimental considerations for obtaining crystals of RNAs and RNA-protein complexes. Topics include design of crystallizable constructs, screening, and optimization of crystallization conditions.


Assuntos
Cristalização/métodos , RNA/química , Animais , Sequência de Bases , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oligorribonucleotídeos/metabolismo , Proteínas/metabolismo , RNA/genética , RNA/metabolismo , Tetrahymena
13.
Nat Struct Biol ; 7 Suppl: 954-6, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11103998

RESUMO

A detailed understanding of the functions and interactions of biological macromolecules requires knowledge of their molecular structures. Structural genomics, the systematic determination of all macromolecular structures represented in a genome, is focused at present exclusively on proteins. It is clear, however, that RNA molecules play a variety of significant roles in cells, including protein synthesis and targeting, many forms of RNA processing and splicing, RNA editing and modification, and chromosome end maintenance. To comprehensively understand the biology of a cell, it will ultimately be necessary to know the identity of all encoded RNAs, the molecules with which they interact and the molecular structures of these complexes. This report focuses on the feasibility of structural genomics of RNA, approaches to determining RNA structures and the potential usefulness of an RNA structural database for both predicting folds and deciphering biological functions of RNA molecules.


Assuntos
Biologia Computacional , Genômica , Conformação de Ácido Nucleico , RNA/química , Biologia Computacional/métodos , Microscopia Crioeletrônica , Cristalografia por Raios X , Bases de Dados como Assunto , Genômica/métodos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , RNA/genética , RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade
14.
Chem Biol ; 7(11): 845-54, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11094338

RESUMO

BACKGROUND: Phosphoramidate oligonucleotide analogs containing N3'-P5' linkages share many structural properties with natural nucleic acids and can be recognized by some RNA-binding proteins. Therefore, if the N-P bond is resistant to nucleolytic cleavage, these analogs may be effective substrate analog inhibitors of certain enzymes that hydrolyze RNA. We have explored the ability of the Tetrahymena group I intron ribozyme to bind and cleave DNA and RNA phosphoramidate analogs. RESULTS: The Tetrahymena group I ribozyme efficiently binds to phosphoramidate oligonucleotides but is unable to cleave the N3'-P5' bond. Although it adopts an A-form helical structure, the deoxyribo-phosphoramidate analog, like DNA, does not dock efficiently into the ribozyme catalytic core. In contrast, the ribo-phosphoramidate analog docks similarly to the native RNA substrate, and behaves as a competitive inhibitor of the group I intron 5' splicing reaction. CONCLUSIONS: Ribo-N3'-P5' phosphoramidate oligonucleotides are useful tools for structural and functional studies of ribozymes as well as protein-RNA interactions.


Assuntos
Oligorribonucleotídeos/metabolismo , RNA Catalítico/antagonistas & inibidores , RNA Catalítico/metabolismo , Tetrahymena thermophila/enzimologia , Amidas , Animais , Ligação Competitiva , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Cinética , Magnésio/metabolismo , Modelos Biológicos , Mimetismo Molecular , Estrutura Molecular , Oligorribonucleotídeos/genética , Ácidos Fosfóricos , RNA Catalítico/genética , Tetrahymena thermophila/genética
15.
J Virol ; 74(22): 10430-7, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11044087

RESUMO

The hepatitis C virus (HCV) internal ribosome entry site (IRES) is a highly structured RNA element that directs cap-independent translation of the viral polyprotein. Morpholino antisense oligonucleotides directed towards stem loop IIId drastically reduced HCV IRES activity. Mutagenesis studies of this region showed that the GGG triplet (nucleotides 266 through 268) of the hexanucleotide apical loop of stem loop IIId is essential for IRES activity both in vitro and in vivo. Sequence comparison showed that apical loop nucleotides (UUGGGU) were absolutely conserved across HCV genotypes and the GGG triplet was strongly conserved among related Flavivirus and Pestivirus nontranslated regions. Chimeric IRES elements with IIId derived from GB virus B (GBV-B) in the context of the HCV IRES possess translational activity. Mutations within the IIId stem loop that abolish IRES activity also affect the RNA structure in RNase T(1)-probing studies, demonstrating the importance of correct RNA folding to IRES function.


Assuntos
Hepacivirus/metabolismo , Biossíntese de Proteínas , RNA Viral/química , RNA Viral/genética , Ribossomos/metabolismo , Regiões 5' não Traduzidas , Sequência de Bases , Linhagem Celular , Sequência Conservada , Hepacivirus/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos Antissenso/metabolismo , Filogenia , Mutação Puntual , RNA não Traduzido/química , RNA não Traduzido/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleases/metabolismo , Transcrição Gênica , Repetições de Trinucleotídeos/genética
16.
Annu Rev Biochem ; 69: 597-615, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10966470

RESUMO

The past few years have seen exciting advances in understanding the structure and function of catalytic RNA. Crystal structures of several ribozymes have provided detailed insight into the folds of RNA molecules. Models of other biologically important RNAs have been constructed based on structural, phylogenetic, and biochemical data. However, many questions regarding the catalytic mechanisms of ribozymes remain. This review compares the structures and possible catalytic mechanisms of four small self-cleaving RNAs: the hammerhead, hairpin, hepatitis delta virus, and in vitro-selected lead-dependent ribozymes. The organization of these small catalysts is contrasted to that of larger ribozymes, such as the group I intron.


Assuntos
RNA Catalítico/química , RNA Catalítico/metabolismo , Animais , Vírus Delta da Hepatite/enzimologia , Modelos Moleculares , Conformação de Ácido Nucleico , RNA de Protozoário/química , RNA de Protozoário/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Tetrahymena thermophila/enzimologia
17.
18.
Curr Opin Chem Biol ; 4(2): 166-70, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10742186

RESUMO

Current research is reshaping basic theories regarding the roles of metal ions in ribozyme function. No longer viewed as strict metalloenzymes, some ribozymes can access alternative catalytic mechanisms depending on the identity and availability of metal ions. Similarly, reaction conditions can allow different folding pathways to predominate, with divalent cations sometimes playing opposing roles.


Assuntos
Metais , Conformação de Ácido Nucleico , RNA Catalítico/química , RNA Catalítico/metabolismo , Animais , Catálise , Cátions , Metaloproteínas/química , Metaloproteínas/metabolismo , Modelos Moleculares
19.
Biochemistry ; 39(10): 2639-51, 2000 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-10704214

RESUMO

Phylogenetic comparisons and site-directed mutagenesis indicate that group I introns are composed of a catalytic core that is universally conserved and peripheral elements that are conserved only within intron subclasses. Despite this low overall conservation, peripheral elements are essential for efficient splicing of their parent introns. We have undertaken an in-depth structure-function analysis to investigate the role of one of these elements, P5abc, using the well-characterized ribozyme derived from the Tetrahymena group I intron. Structural comparisons using solution-based free radical cleavage revealed that a ribozyme lacking P5abc (E(DeltaP5abc)) and E(DeltaP5abc) with P5abc added in trans (E(DeltaP5abc).P5abc) adopt a similar global tertiary structure at Mg(2+) concentrations greater than 20 mM [Doherty, E. A., et al. (1999) Biochemistry 38, 2982-90]. However, free E(DeltaP5abc) is greatly compromised in overall oligonucleotide cleavage activity, even at Mg(2+) concentrations as high as 100 mM. Further characterization of E(DeltaP5abc) via DMS modification revealed local structural differences at several positions in the conserved core that cluster around the substrate binding sites. Kinetic and thermodynamic dissection of individual reaction steps identified defects in binding of both substrates to E(DeltaP5abc), with > or =25-fold weaker binding of a guanosine nucleophile and > or =350-fold weaker docking of the oligonucleotide substrate into its tertiary interactions with the ribozyme core. These defects in binding of the substrates account for essentially all of the 10(4)-fold decrease in overall activity of the deletion mutant. Together, the structural and functional observations suggest that the P5abc peripheral element not only provides stability but also positions active site residues through indirect interactions, thereby preferentially stabilizing the active ribozyme structure relative to alternative less active states. This is consistent with the view that peripheral elements engage in a network of mutually reinforcing interactions that together ensure cooperative folding of the ribozyme to its active structure.


Assuntos
RNA Catalítico/metabolismo , Tetrahymena thermophila/enzimologia , Animais , Sequência de Bases , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Catálise/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , RNA Catalítico/química , RNA Catalítico/genética , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/genética , Ésteres do Ácido Sulfúrico/farmacologia , Tetrahymena thermophila/genética
20.
Science ; 287(5456): 1232-9, 2000 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-10678824

RESUMO

The signal recognition particle (SRP), a protein-RNA complex conserved in all three kingdoms of life, recognizes and transports specific proteins to cellular membranes for insertion or secretion. We describe here the 1.8 angstrom crystal structure of the universal core of the SRP, revealing protein recognition of a distorted RNA minor groove. Nucleotide analog interference mapping demonstrates the biological importance of observed interactions, and genetic results show that this core is functional in vivo. The structure explains why the conserved residues in the protein and RNA are required for SRP assembly and defines a signal sequence recognition surface composed of both protein and RNA.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli , RNA Bacteriano/química , Partícula de Reconhecimento de Sinal/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Pareamento de Bases , Sítios de Ligação , Membrana Celular/metabolismo , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Ligação de Hidrogênio , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Potássio/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Transformação Bacteriana , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...