Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 110(3): 1197-1205, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33069708

RESUMO

The aim of this work was to carry out a preformulation study on JMV5038 as a new potent cytotoxic agent, and to develop its formulation within vegetable oil-based hybrid submicron particles (HNP) in order to obtain a versatile dosage form against melanoma. JMV5038 was first characterized through physico-chemical tests and it exhibited high melting point and logP value, an important pH-sensitivity that led to the formation of well-identified degradation products at low pH, as well as a substantial solubility value in silylated castor oil (ICO). Then, JMV5038-loaded HNP were formulated through a thermostabilized emulsion process based on the sol-gel cross-linking of ICO. They showed high loading efficiency and their in vitro release kinetic assessed in a biorelevant PBS/octanol biphasic system showed a constant sustained release over one month. The cytotoxic activity and cytocompatibility of HNP were evaluated on A375 melanoma cells and NIH 3T3 cells, respectively. JMV5038-loaded HNP exhibited a slightly enhanced cytotoxic activity of JMV5038 on melanoma cells while demonstrating their safety on NIH 3T3 cells. In conclusion, JMV5038-loaded HNP proved to be an efficient and safe drug subcutaneous delivery system that will be interesting to evaluate through preclinical studies.


Assuntos
Melanoma , Óleos de Plantas , Animais , Óleo de Rícino , Emulsões , Melanoma/tratamento farmacológico , Camundongos , Tamanho da Partícula , Solubilidade
2.
Int J Pharm ; 592: 120070, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33188895

RESUMO

The aim of this study was to evidence the ability of vegetable oil-based hybrid microparticles (HMP) to be an efficient and safe drug delivery system after subcutaneous administration. The HMP resulted from combination of a thermostabilized emulsification process and a sol-gel chemistry. First of all, castor oil was successfully silylated by means of (3-Isocyanatopropyl)trimethoxysilane in solvent-free and catalyst-free conditions. Estradiol, as a model drug, was dissolved in silylated castor oil (ICOm) prior to emulsification, and then an optimal sol-gel crosslinking was achieved inside the ICOm microdroplets. The resulting estradiol-loaded microparticles were around 80 µm in size and allowed to entrap 4 wt% estradiol. Their release kinetics in a PBS/octanol biphasic system exhibited a one-week release profile, and the released estradiol was fully active on HeLa ERE-luciferase ERα cells. The hybrid microparticles were cytocompatible during preliminary tests on NIH 3T3 fibroblasts (ISO 10993-5 standard) and they were fully biocompatible after subcutaneous injection on mice (ISO 10993-6 standard) underlining their high potential as a safe and long-acting subcutaneous drug delivery system.


Assuntos
Preparações Farmacêuticas , Óleos de Plantas , Animais , Óleo de Rícino , Sistemas de Liberação de Medicamentos , Camundongos , Tamanho da Partícula , Solventes
3.
Langmuir ; 35(39): 12597-12612, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461287

RESUMO

Microfluidics is one of the most fascinating fields that researchers have been trying to apply in a large number of scientific disciplines over the past two decades. Among them, the discipline of food and pharmaceutical formulation encountered several obstacles when combining microfluidics with aqueous media. Indeed, the physical properties of liquids at micrometric volumes being particular, the droplet generation within microfluidic devices is a big challenge to be met. This focus review is intended to be an initiation for those who would like to generate microdroplets in microfluidic systems involving aqueous continuous phases. It provides a state-of-the-art look at such systems while focusing on the microfluidic devices used, their applications to form a wide variety of emulsions and particles, and the key role held by the interface between the device channels and the emulsion. This review also leads to reflections on new materials that can be used in microfluidic systems with aqueous continuous phases.

4.
Int J Pharm ; 567: 118478, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260782

RESUMO

To encapsulate and deliver poorly water-soluble drugs, castor oil/silica hybrid microparticles (HMP)s were synthesized. Green chemistries were used to silylate the oil and further cross-link it into solid microparticles by sol-gel reaction. Silylated castor oils (ICO)s at various silylation ratios were prepared and allowed the solubilization of ibuprofen at several concentrations up to 16 wt%. The HMPs were formulated by ThermoStabilized Emulsion (TSE) process which permits to "freeze" the oil-in-water emulsion while the sol-gel reaction occurs. The hybrid mineral/organic composition and the morphology (spherical shape and micrometric size) of these HMPs were determined by complementary technics (SEM, TGA, EDX, 29Si NMR and FTIR spectroscopies). The HMPs reached a good ibuprofen loading efficiency regardless to the formulation used while the release kinetics in simulated oral administration exhibited a tunable release during 3 h according to the silylation ratio. The ibuprofen rate also influenced its own amorphous or crystalline character within the HMPs. For subcutaneous conditions, ibuprofen release took place over 15 days. Finally, biodegradability assays in simulated digestion medium suggested a surface-limited hydrolysis of the particles and cytocompatibility studies on NIH-3T3 and Caco-2 cells demonstrated an excellent cellular viability.


Assuntos
Óleo de Rícino/administração & dosagem , Portadores de Fármacos/administração & dosagem , Dióxido de Silício/administração & dosagem , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Células CACO-2 , Óleo de Rícino/química , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Ibuprofeno/administração & dosagem , Ibuprofeno/química , Camundongos , Células NIH 3T3 , Dióxido de Silício/química , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...