Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 945: 174039, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885709

RESUMO

The effect of sustainable agricultural practices, such as mulching or the application of straw residues as an organic amendment, on the degradation, dissipation and persistence in the soil of S-metolachlor (SMOC), foramsulfuron (FORAM) and thiencarbazone-methyl (TCM) is still unclear. The objective here was to conduct a laboratory experiment to evaluate the impact of milled wheat straw (WS) simulating its individual use as mulch or applied as an organic amendment to two agricultural soils: unamended and WS-amended soils on the degradation kinetics of the herbicides SMOC, FORAM and TCM, and on the formation of their major metabolites at two incubation temperatures (14 °C and 24 °C). The degradation rate of SMOC on WS was 6.9-16.7 times faster than that observed for FORAM and TCM at both temperatures. The half-life (DT50) values were 1.1-10.6 times lower for FORAM than for SMOC and TCM in the unamended and WS-amended soils at 14 °C and 24 °C. The application of WS to soils increased the DT50 values from 1.1 to 11.2 times for all the herbicides at both incubation temperatures due to their higher adsorption and lower bioavailability. The herbicides recorded a faster degradation at 24 °C (1.2-3.9 times) than at 14 °C, according to Q10 values >1. SMOC metabolites were more persistent in WS-amended soils than in unamended ones, in agreement with the DT50 values recorded for the parent compound. The results indicate that the effect of the mulch applied to soils as an organic amendment was different depending on the herbicide and incubation temperature. The outcomes of this research can give key suggestions for reducing the effects of residual herbicides following sustainable agricultural practices by avoiding soil and groundwater contamination, which is one of the challenges involved in the application of chemical inputs.

2.
Sci Total Environ ; 892: 164749, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37295534

RESUMO

Mulching and organic soil amendment are two agricultural practices that are being increasingly used to preserve soil from degradation, although they may modify the fate of herbicides when applied in soils subjected to these practices. This study has set out to compare the impact of both agricultural practices on the adsorption-desorption behaviour of the herbicides S-metolachlor (SMOC), foramsulfuron (FORAM), and thiencarbazone-methyl (TCM) involving winter wheat mulch residues at different stages of decomposition and particle size, and unamended soils or those amended with mulch. The Freundlich Kf adsorption constants of the three herbicides by mulches, and unamended and amended soils ranged between 1.34 and 65.8 (SMOC), 0-34.3 (FORAM), and 0.01-1.10 (TCM). The adsorption of the three compounds was significantly higher in mulches than in soils (unamended and amended). The adsorption of SMOC and FORAM increased significantly with mulch decomposition, with this positive impact also being observed on the adsorption of FORAM and TCM after mulch milling. Simple and multiple correlations between mulches, soils, and herbicide properties, and adsorption-desorption constants (Kf, Kd, Kfd) reflected the organic carbon (OC) content and/or dissolved organic carbon (DOC) content of the adsorbents as main variables controlling the adsorption and/or desorption of each herbicide. The statistic R2 revealed that >61 % of the variability in the adsorption-desorption constants could be explained by jointly considering the OC of mulches and soils and the hydrophobicity (for Kf) or water solubility of herbicides (for Kd or Kfd). The same trend observed for Kfd desorption constants as for Kf adsorption ones resulted in higher percentages of herbicide remaining adsorbed after desorption in amended soils (33 %-41 % of SMOC, 0 %-15 % of FORAM, and 2 %-17 % of TCM) than in mulches (< 10 %). The results reveal a higher efficiency of organic soil amendment than mulching as an agricultural practice for immobilising the herbicides studied when winter wheat mulch residues are used as a common adsorbent, and as a better strategy for avoiding groundwater contamination.


Assuntos
Herbicidas , Poluentes do Solo , Herbicidas/análise , Solo/química , Adsorção , Poluentes do Solo/análise , Agricultura , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...