Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Steroids ; 204: 109398, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513983

RESUMO

Estrogen and testosterone are typically thought of as gonadal or adrenal derived steroids that cross the blood brain barrier to signal via both rapid nongenomic and slower genomic signalling pathways. Estrogen and testosterone signalling has been shown to drive interlinked behaviours such as social behaviours and cognition by binding to their cognate receptors in hypothalamic and forebrain nuclei. So far, acute brain slices have been used to study short-term actions of 17ß-estradiol, typically using electrophysiological measures. For example, these techniques have been used to investigate, nongenomic signalling by estrogen such as the estrogen modulation of long-term potentiation (LTP) in the hippocampus. Using a modified method that preserves the slice architecture, we show, for the first time, that acute coronal slices from the prefrontal cortex and from the hypothalamus maintained in aCSF over longer periods i.e. 24 h can be steroidogenic, increasing their secretion of testosterone and estrogen. We also show that the hypothalamic nuclei produce more estrogen and testosterone than the prefrontal cortex. Therefore, this extended acute slice system can be used to study the regulation of steroid production and secretion by discrete nuclei in the brain.


Assuntos
Estradiol , Estrogênios , Camundongos , Animais , Estrogênios/metabolismo , Estradiol/metabolismo , Potenciação de Longa Duração/fisiologia , Testosterona/metabolismo , Esteroides/metabolismo , Hipocampo/metabolismo
2.
Steroids ; 200: 109324, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820890

RESUMO

Sex and aggression are well studied examples of social behaviours that are common to most animals and are mediated by an evolutionary conserved group of interconnected nuclei in the brain called the social behaviour network. Though glucocorticoids and in particular estrogen regulate these social behaviours, their effects in the brain are generally thought to be mediated by genomic signalling, a slow transcriptional regulation mediated by nuclear hormone receptors. In the last decade or so, there has been renewed interest in understanding the physiological significance of rapid, non-genomic signalling mediated by steroids. Though the identity of the membrane hormone receptors that mediate this signalling is not clearly understood and appears to be different in different cell types, such signalling contributes to physiologically relevant behaviours such as sex and aggression. In this short review, we summarise the evidence for this phenomenon in the rodent, by focusing on estrogen and to some extent, glucocorticoid signalling. The use of these signals, in relation to genomic signalling is manifold and ranges from potentiation of transcription to the possible transduction of environmental signals.


Assuntos
Agressão , Transdução de Sinais , Animais , Agressão/fisiologia , Esteroides , Estrogênios , Genômica
3.
Front Endocrinol (Lausanne) ; 11: 595895, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193108

RESUMO

Estrogens are critical in driving sex-typical social behaviours that are ethologically relevant in mammals. This is due to both production of local estrogens and signaling by these ligands, particularly in an interconnected set of nuclei called the social behavioural network (SBN). The SBN is a sexually dimorphic network studied predominantly in rodents that is thought to underlie the display of social behaviour in mammals. Signalling by the predominant endogenous estrogen, 17ß-estradiol, can be either via the classical genomic or non-classical rapid pathway. In the classical genomic pathway, 17ß-estradiol binds the intracellular estrogen receptors (ER) α and ß which act as ligand-dependent transcription factors to regulate transcription. In the non-genomic pathway, 17ß-estradiol binds a putative plasma membrane ER (mER) such as GPR30/GPER1 to rapidly signal via kinases or calcium flux. Though GPER1's role in sexual dimorphism has been explored to a greater extent in cardiovascular physiology, less is known about its role in the brain. In the last decade, activation of GPER1 has been shown to be important for lordosis and social cognition in females. In this review we will focus on several mechanisms that may contribute to sexually dimorphic behaviors including the colocalization of these estrogen receptors in the SBN, interplay between the signaling pathways activated by these different estrogen receptors, and the role of these receptors in development and the maintenance of the SBN, all of which remain underexplored.


Assuntos
Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Caracteres Sexuais , Feminino , Humanos , Masculino , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética
4.
J Endocrinol ; 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454785

RESUMO

Human Prader-Willi syndrome (PWS) is characterised by impairments of multiple systems including the growth hormone (GH) axis and skeletal growth. To address our lack of knowledge of the influence of PWS on skeletal integrity in mice, we have characterised the endocrine and skeletal phenotype of the PWS-ICdel mouse model for "full" PWS and determined the impact of thermoneutrality. Tibial length, epiphyseal plate width and marrow adiposity were reduced by 6%, 18% and 79% in male PWS-ICdel mice, with osteoclast density being unaffected. Similar reductions in femoral length accompanied a 32% reduction in mid-diaphyseal cortical diameter. Distal femoral Tb.N was reduced by 62%, with individual trabeculae being less plate-like and the lattice being more fragmented (Tb.Pf increased by 63%). Cortical strength (Ultimate moment) was reduced by 26% as a result of reductions in calcified tissue strength and the geometric contribution. GH and prolactin contents in PWS-ICdel pituitaries were reduced in proportion to their smaller pituitary size, with circulating IGF-1 concentration reduced by 37-47%. Conversely, while pituitary LH content was halved, circulating gonadotropin concentrations were unaffected. Although longitudinal growth, marrow adiposity and femoral geometry were unaffected by thermoneutrality, strengthened calcified tissue reversed weakened cortex of PWS-ICdel femora. While underactivity of the GH-axis may be due to loss of Snord116 expression and impaired limb bone geometry and strength due to loss of Magel2 expression, comprehensive analysis of skeletal integrity in the single gene deletion models is required. Our data imply that thermoneutrality may ameliorate the elevated fracture risk associated with PWS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...