Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 10796, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26060923

RESUMO

Quantum entanglement is notorious for being a very fragile resource. Significant efforts have been put into the study of entanglement degradation in the presence of a realistic noisy environment. Here, we present a theoretical and an experimental study of the decoherence properties of entangled pairs of qubits. The entanglement dynamics of maximally entangled qubit pairs is shown to be related in a simple way to the noise representation in the Bloch sphere picture. We derive the entanglement level in the case when both qubits of a Bell state are transmitted through any arbitrary unital Pauli channel, and compare it to the case when the channel is applied only to one of the qubits. The dynamics of both cases was verified experimentally using an all-optical setup. We further investigated the evolution of partially entangled initial states. Different dynamics was observed for initial mixed and pure states of the same entanglement level.

2.
Opt Express ; 22(10): 11945-53, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24921315

RESUMO

Classically, the resolution of optical measurements is limited by the Rayleigh limit and their sensitivity by the shot noise limit. However, non-classical measurements can surpass these limits. Measuring the photon number parity using a photon-number resolving detector, super resolved phase measurements up to 144 better than the Rayleigh limit are presented, with coherent states of up to 4,200 photons on average. An additional measurement that can be implemented with standard single-photon detectors is proposed and demonstrated. With this scheme, super resolution at the shot noise limit is demonstrated with coherent states of up to 200 photons on average.

3.
Phys Rev Lett ; 110(21): 210403, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745845

RESUMO

The role of the timing and order of quantum measurements is not just a fundamental question of quantum mechanics, but also a puzzling one. Any part of a quantum system that has finished evolving can be measured immediately or saved for later, without affecting the final results, regardless of the continued evolution of the rest of the system. In addition, the nonlocality of quantum mechanics, as manifested by entanglement, does not apply only to particles with spacelike separation, but also to particles with timelike separation. In order to demonstrate these principles, we generated and fully characterized an entangled pair of photons that have never coexisted. Using entanglement swapping between two temporally separated photon pairs, we entangle one photon from the first pair with another photon from the second pair. The first photon was detected even before the other was created. The observed two-photon state demonstrates that entanglement can be shared between timelike separated quantum systems.

4.
Phys Rev Lett ; 109(8): 080504, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-23002730

RESUMO

Current photon entangling schemes require resources that grow with the photon number. We present a new approach that generates quantum entanglement between many photons, using only a single source of entangled photon pairs. The different spatial modes, one for each photon as required by other schemes, are replaced by different time slots of only two spatial modes. States of any number of photons are generated with the same setup, solving the scalability problem caused by the previous need for extra resources. Consequently, entangled photon states of larger numbers than before are practically realizable.

5.
Opt Express ; 20(3): 2266-76, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330466

RESUMO

Optical parametric down-conversion (PDC) is a central tool in quantum optics experiments. The number of collected down-converted modes greatly affects the quality of the produced photon state. We use Silicon Photomultiplier (SiPM) number-resolving detectors in order to observe the photon-number distribution of a PDC source, and show its dependence on the number of collected modes. Additionally, we show how the stimulated emission of photons and the partition of photons into several modes determine the overall photon number. We present a novel analytical model for the optical crosstalk effect in SiPM detectors, and use it to analyze the results.


Assuntos
Iluminação/instrumentação , Fotometria/instrumentação , Fótons , Desenho de Equipamento , Análise de Falha de Equipamento , Distribuições Estatísticas
6.
Opt Express ; 19(21): 20420-34, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21997051

RESUMO

We describe the full characterization of the biaxial nonlinear crystal BiB3O6 (BiBO) as a polarization entangled photon source using non-collinear type-II parametric down-conversion. We consider the relevant parameters for crystal design, such as cutting angles, polarization of the photons, effective nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect of the pump laser bandwidth. Experimental results showing entanglement generation with high rates and a comparison to the well investigated ß-BaB2O4 (BBO) crystal are presented as well. Changing the down-conversion crystal of a polarization entangled photon source from BBO to BiBO enhances the generation rate as if the pump power was increased by 2.5 times. Such an improvement is currently required for the generation of multiphoton entangled states.

7.
Phys Rev Lett ; 106(13): 130502, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21517363

RESUMO

Bell state measurements, in which two quantum bits are projected onto a maximally entangled state, are an essential component of quantum information science. We propose and experimentally demonstrate the projection of two quantum systems with three states (qutrits) onto a generalized maximally entangled state. Each qutrit is represented by the polarization of a pair of indistinguishable photons-a biphoton. The projection is a joint measurement on both biphotons using standard linear optics elements. This demonstration enables the realization of quantum information protocols with qutrits, such as teleportation and entanglement swapping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...