Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 22(22): 4292-4305, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36196753

RESUMO

This work presents the application of droplet-based microfluidics for the cultivation of microspores from Brassica napus using the doubled haploid technology. Under stress conditions (e.g. heat shock) or by chemical induction a certain fraction of the microspores can be reprogrammed and androgenesis can be induced. This process is an important approach for plant breeding because desired plant properties can be anchored in the germline on a genetic level. However, the reprogramming rate of the microspores is generally very low, increasing it by specific stimulation is, therefore, both a necessary and challenging task. In order to accelerate the optimisation and development process, the application of droplet-based microfluidics can be a promising tool. Here, we used a tube-based microfluidic system for the generation and cultivation of microspores inside nL-droplets. Different factors like cell density, tube material and heat shock conditions were investigated to improve the yield of vital plant organoids. Evaluation and analysis of the stimuli response were done on an image base aided by an artificial intelligence cell detection algorithm. Droplet-based microfluidics allowed us to apply large concentration programs in small test volumes and to screen the best conditions for reprogramming cells by the histone deacetylase inhibitor trichostatin A and for enhancing the yield of vital microspores in droplets. An enhanced reprogramming rate was found under the heat shock conditions at 32 °C for about 3 to 6 days. In addition, the comparative experiment with MTP showed that droplet cultivation with lower cell density (<10 cells per droplet) or adding media after 3 or 6 days significantly positively affects the microspore growth and embryo rate inside 120 nL droplets. Finally, the developed embryos could be removed from the droplets and further grown into mature plants. Overall, we demonstrated that the droplet-based tube system is suitable for implementation in an automated, miniaturized system to achieve the induction of embryogenic development in haploid microspore stem cells of Brassica napus.


Assuntos
Brassica napus , Microfluídica , Haploidia , Pólen , Inteligência Artificial , Brassica napus/genética , Células-Tronco
2.
Plant Methods ; 18(1): 64, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585602

RESUMO

BACKGROUND: Although quantitative single-cell analysis is frequently applied in animal systems, e.g. to identify novel drugs, similar applications on plant single cells are largely missing. We have exploited the applicability of high-throughput microscopic image analysis on plant single cells using tobacco leaf protoplasts, cell-wall free single cells isolated by lytic digestion. Protoplasts regenerate their cell wall within several days after isolation and have the potential to expand and proliferate, generating microcalli and finally whole plants after the application of suitable regeneration conditions. RESULTS: High-throughput automated microscopy coupled with the development of image processing pipelines allowed to quantify various developmental properties of thousands of protoplasts during the initial days following cultivation by immobilization in multi-well-plates. The focus on early protoplast responses allowed to study cell expansion prior to the initiation of proliferation and without the effects of shape-compromising cell walls. We compared growth parameters of wild-type tobacco cells with cells expressing the antiapoptotic protein Bcl2-associated athanogene 4 from Arabidopsis (AtBAG4). CONCLUSIONS: AtBAG4-expressing protoplasts showed a higher proportion of cells responding with positive area increases than the wild type and showed increased growth rates as well as increased proliferation rates upon continued cultivation. These features are associated with reported observations on a BAG4-mediated increased resilience to various stress responses and improved cellular survival rates following transformation approaches. Moreover, our single-cell expansion results suggest a BAG4-mediated, cell-independent increase of potassium channel abundance which was hitherto reported for guard cells only. The possibility to explain plant phenotypes with single-cell properties, extracted with the single-cell processing and analysis pipeline developed, allows to envision novel biotechnological screening strategies able to determine improved plant properties via single-cell analysis.

3.
Front Plant Sci ; 12: 789789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095963

RESUMO

Alternation of generations between a sporophytic and gametophytic developmental stage is a feature common to all land plants. This review will discuss the evolutionary origins of these two developmental programs from unicellular eukaryotic progenitors establishing the ability to switch between haploid and diploid states. We will compare the various genetic factors that regulate this switch and highlight the mechanisms which are involved in maintaining the separation of sporophytic and gametophytic developmental programs. While haploid and diploid stages were morphologically similar at early evolutionary stages, largely different gametophyte and sporophyte developments prevail in land plants and finally allowed the development of pollen as the male gametes with specialized structures providing desiccation tolerance and allowing long-distance dispersal. Moreover, plant gametes can be reprogrammed to execute the sporophytic development prior to the formation of the diploid stage achieved with the fusion of gametes and thus initially maintain the haploid stage. Upon diploidization, doubled haploids can be generated which accelerate modern plant breeding as homozygous plants are obtained within one generation. Thus, knowledge of the major signaling pathways governing this dual ontogeny in land plants is not only required for basic research but also for biotechnological applications to develop novel breeding methods accelerating trait development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...