Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409344

RESUMO

The angiotensin II (Ang II) type 1 receptor (AT1R) is involved in the regulation of blood pressure (through vasoconstriction) and water and ion homeostasis (mediated by interaction with the endogenous agonist). AT1R can also be activated by auto-antibodies (AT1R-Abs), which are associated with manifold diseases, such as obliterative vasculopathy, preeclampsia and systemic sclerosis. Knowledge of the molecular mechanisms related to AT1R-Abs binding and associated signaling cascade (dys-)regulation remains fragmentary. The goal of this study was, therefore, to investigate details of the effects of AT1R-Abs on G-protein signaling and subsequent cell proliferation, as well as the putative contribution of the three extracellular receptor loops (ELs) to Abs-AT1R signaling. AT1R-Abs induced nuclear factor of activated T-cells (NFAT) signaling, which reflects Gq/11 and Gi activation. The impact on cell proliferation was tested in different cell systems, as well as activation-triggered receptor internalization. Blockwise alanine substitutions were designed to potentially investigate the role of ELs in AT1R-Abs-mediated effects. First, we demonstrate that Ang II-mediated internalization of AT1R is impeded by binding of AT1R-Abs. Secondly, exclusive AT1R-Abs-induced Gq/11 activation is most significant for NFAT stimulation and mediates cell proliferation. Interestingly, our studies also reveal that ligand-independent, baseline AT1R activation of Gi signaling has, in turn, a negative effect on cell proliferation. Indeed, inhibition of Gi basal activity potentiates proliferation triggered by AT1R-Abs. Finally, although AT1R containing EL1 and EL3 blockwise alanine mutations were not expressed on the human embryonic kidney293T (HEK293T) cell surface, we at least confirmed that parts of EL2 are involved in interactions between AT1R and Abs. This current study thus provides extended insights into the molecular action of AT1R-Abs and associated mechanisms of interrelated pathogenesis.


Assuntos
Anticorpos , Receptor Tipo 1 de Angiotensina , Alanina , Angiotensina II , Anticorpos/farmacologia , Proliferação de Células , Células HEK293 , Humanos , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo
4.
Sci Rep ; 10(1): 5097, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184438

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Sci Rep ; 10(1): 1004, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969668

RESUMO

The experimental evidence that Adhesion G Protein-Coupled Receptors (aGPCRs) functionally couple to heterotrimeric G proteins has been emerging in incremental steps, but attributing biological significance to their G protein signalling function still presents a major challenge. Here, utilising activated truncated forms of the receptors, we show that ADGRE2/EMR2 and ADGRE5/CD97 are G protein-coupled in a variety of recombinant systems. In a yeast-based assay, where heterologous GPCRs are coupled to chimeric G proteins, EMR2 showed broad G protein-coupling, whereas CD97 coupled more specifically to Gα12, Gα13, Gα14 and Gαz chimeras. Both receptors induced pertussis-toxin (PTX) insensitive inhibition of cyclic AMP (cAMP) levels in mammalian cells, suggesting coupling to Gαz. EMR2 was shown to signal via Gα16, and via a Gα16/Gαz chimera, to stimulate IP1 accumulation. Finally, using an NFAT reporter assay, we identified a polyclonal antibody that activates EMR2 G protein signalling in vitro. Our results highlight the potential for the development of soluble agonists to understand further the biological effects and therapeutic opportunities for ADGRE receptor-mediated G protein signalling.


Assuntos
Anticorpos/imunologia , Antígenos CD/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Western Blotting , Células HEK293/metabolismo , Humanos , Imunoprecipitação , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/imunologia , Transdução de Sinais/efeitos dos fármacos
6.
Pharmacol Res Perspect ; 7(6): e00542, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768260

RESUMO

The G-protein-coupled receptor GPR132, also known as G2A, is activated by 9-hydroxyoctadecadienoic acid (9-HODE) and other oxidized fatty acids. Other suggested GPR132 agonists including lysophosphatidylcholine (LPC) have not been readily reproduced. Here, we identify N-acylamides in particular N-acylglycines, as lipid activators of GPR132 with comparable activity to 9-HODE. The order-of-potency is N-palmitoylglycine > 9-HODE ≈ N-linoleoylglycine > linoleamide > N-oleoylglycine ≈ N-stereoylglycine > N-arachidonoylglycine > N-docosehexanoylglycine. Physiological concentrations of N-acylglycines in tissue are sufficient to activate GPR132. N-linoleoylglycine and 9-HODE also activate rat and mouse GPR132, despite limited sequence conservation to human. We describe pharmacological tools for GPR132, identified through drug screening. SKF-95667 is a novel GPR132 agonist. SB-583831 and SB-583355 are peptidomimetic molecules containing core amino acids (glycine and phenylalanine, respectively), and structurally related to previously described ligands. A telmisartan analog, GSK1820795A, antagonizes the actions of N-acylamides at GPR132. The synthetic cannabinoid CP-55 940 also activates GPR132. Molecular docking to a homology model suggested a site for lipid binding, predicting the acyl side-chain to extend into the membrane bilayer between TM4 and TM5 of GPR132. Small-molecule ligands are envisaged to occupy a "classical" site encapsulated in the 7TM bundle. Structure-directed mutagenesis indicates a critical role for arginine at position 203 in transmembrane domain 5 to mediate GPR132 activation by N-acylamides. Our data suggest distinct modes of binding for small-molecule and lipid agonists to the GPR132 receptor. Antagonists, such as those described here, will be vital to understand the physiological role of this long-studied target.


Assuntos
Proteínas de Ciclo Celular/agonistas , Glicina/análogos & derivados , Ácidos Palmíticos/farmacologia , Peptidomiméticos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Células CHO , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cricetulus , Cicloexanóis/farmacologia , Antagonismo de Drogas , Ácidos Graxos Insaturados/farmacologia , Glicina/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Homologia Estrutural de Proteína , Telmisartan/análogos & derivados , Telmisartan/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-31295371

RESUMO

RATIONALE: Rapid Evaporative Ionisation Mass Spectrometry (REIMS) has been evaluated as a tool to improve analytical efficiency and add capability in areas within Pharmaceutical Research and Development (Pharma R&D). This article reports the comparison of single MS, and tandem MS/MS REIMS (REIMS and REIMS/MS) methodologies to investigate which mode produces maximum discrimination power for screening applications. METHODS: Control tissue samples and cell line suspension samples were analysed using optimised REIMS and REIMS/MS to evaluate which technique produced optimal discrimination power for control tissue and cell line identification. The iKnife sampling tool and a prototype 'cell sampler' were utilised for tissue and cell analysis, respectively. The REIMS source was coupled to a hybrid Quadrupole-Time Of Flight (QTOF) mass spectrometer. Multivariate Analysis (MVA) was utilised to evaluate the resulting Mass Spectrometry (MS) data and discriminate between sample types. RESULTS: Proof of concept investigations demonstrating that REIMS/MS offered increased MVA discrimination for sample identification, compared with REIMS, is presented for the first time. Control tissue data showed discrimination by timepoint classification over 0-144 h storage after removal from the host. Timepoint discrimination was optimised using REIMS/MS with a collision energy that effectively maximised ion fragmentation. Similar optimisation was observed when REIMS/MS was applied to the identification of cell lines. CONCLUSIONS: The proof of concept results demonstrate that REIMS/MS can offer advantages over REIMS for control tissue quality screening, and cell line identification applications in Pharma R&D. Further work following this proof of concept investigation is being undertaken to implement the technology for these applications, utilising the optimised REIMS/MS methodology. REIMS/MS will also be used as an optimised tool for other applications.

8.
Pharmacology ; 102(5-6): 324-331, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30296786

RESUMO

BACKGROUND/AIMS: CID16020046 blocks the effect of the lipid lysophosphatidylinositol (LPI) at its receptor, GPR55. CID16020046 and another antagonist, ML193, have been used to investigate GPR55-mediated effects of LPI on cells, tissues, and in vivo. Here we describe the structure-activity relationship of CID16020046. METHODS: Yeast or human cells were engineered to express GPR55 or control receptors. Cells were pretreated with a test agent before agonist challenge. Functional responses were quantified by yeast gene-reporter or calcium imaging. RESULTS: Three substituents around the central pyrazololactam core of CID16020046 are each tolerant to substitution without abolishing GPR55 activity. Analogues of CID16020046 with potency at GPR55 ranging >1,000-fold are described, including several lacking activity up to the top concentration tested. One analogue, compound 1 (GSK875734A), has approximately 50-fold greater potency than CID16020046 in an inverse agonist assay. CID16020046, ML193 and 2 further antagonists (ML191 and ML192) all block the effect of a surrogate agonist at human GPR55. ML193, CID16020046 and several other examples of the pyrazololactam chemotype were also shown to antagonise rat GPR55. CONCLUSION: These data confirm the utility of CID16020046 and ML193 as tools to investigate the physiological role of GPR55, and offer starting points for GPR55 antagonists with optimised pharmacokinetic or other properties.


Assuntos
Compostos Azabicíclicos/química , Compostos Azabicíclicos/farmacologia , Benzoatos/química , Benzoatos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Humanos , Lisofosfolipídeos/farmacologia , Ratos , Receptores de Canabinoides , Proteínas Recombinantes de Fusão/farmacologia , Relação Estrutura-Atividade , Leveduras/metabolismo
10.
J Biol Chem ; 291(42): 21925-21944, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27566546

RESUMO

The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gαs-mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gαs and Gαq but also identify a Gαi component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gαs, Gαi, and Gαq/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology.


Assuntos
Adrenomedulina/metabolismo , AMP Cíclico/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Adrenomedulina/genética , AMP Cíclico/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Proteínas Nucleares/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética
11.
J Med Chem ; 59(3): 947-64, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26756468

RESUMO

A series of N(6)-bicyclic and N(6)-(2-hydroxy)cyclopentyl derivatives of adenosine were synthesized as novel A1R agonists and their A1R/A2R selectivity assessed using a simple yeast screening platform. We observed that the most selective, high potency ligands were achieved through N(6)-adamantyl substitution in combination with 5'-N-ethylcarboxamido or 5'-hydroxymethyl groups. In addition, we determined that 5'-(2-fluoro)thiophenyl derivatives all failed to generate a signaling response despite showing an interaction with the A1R. Some selected compounds were also tested on A1R and A3R in mammalian cells revealing that four of them are entirely A1R-selective agonists. By using in silico homology modeling and ligand docking, we provide insight into their mechanisms of recognition and activation of the A1R. We believe that given the broad tissue distribution, but contrasting signaling profiles, of adenosine receptor subtypes, these compounds might have therapeutic potential.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Ciclopentanos/farmacologia , Descoberta de Drogas , Agonistas do Receptor Purinérgico P1/farmacologia , Adenosina/química , Adenosina/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Ciclopentanos/síntese química , Ciclopentanos/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Agonistas do Receptor Purinérgico P1/síntese química , Agonistas do Receptor Purinérgico P1/química , Receptor A1 de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos
12.
J Med Chem ; 59(3): 1003-20, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26751273

RESUMO

FTY720 is the first oral small molecule approved for the treatment of people suffering from relapsing-remitting multiple sclerosis. It is a potent agonist of the S1P1 receptor, but its lack of selectivity against the S1P3 receptor has been linked to most of the cardiovascular side effects observed in the clinic. These findings have triggered intensive efforts toward the identification of a second generation of S1P3-sparing S1P1 agonists. We have recently disclosed a series of orally active tetrahydroisoquinoline (THIQ) compounds matching these criteria. In this paper we describe how we defined and implemented a strategy aiming at the discovery of selective structurally distinct follow-up agonists. This effort culminated with the identification of a series of orally active tetrahydropyrazolopyridines.


Assuntos
Descoberta de Drogas , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Piridinas/administração & dosagem , Piridinas/farmacologia , Receptores de Lisoesfingolipídeo/agonistas , Administração Oral , Animais , Linhagem Celular , Cães , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Piridinas/síntese química , Piridinas/química , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Receptores de Esfingosina-1-Fosfato , Relação Estrutura-Atividade
13.
Pharmacol Res Perspect ; 3(3): e00141, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26236484

RESUMO

FFA2 is a receptor for short-chain fatty acids. Propionate (C3) and 4-chloro-α-(1-methylethyl)-N-2-thiazolyl-benzeneacetamide (4-CMTB), the prototypical synthetic FFA2 agonist, evoke calcium mobilization in neutrophils and inhibit lipolysis in adipocytes via this G-protein-coupled receptor. 4-CMTB contains an N-thiazolylamide motif but no acid group, and 4-CMTB and C3 bind to different sites on FFA2 and show allosteric cooperativity. Recently, FFA2 agonists have been described that contain both N-thiazolylamide and carboxylate groups, reminiscent of bitopic ligands. These are thought to engage the carboxylate-binding site on FFA2, but preliminary evidence suggests they do not bind to the same site as 4-CMTB even though both contain N-thiazolylamide. Here, we describe the characterization of four FFA2 ligands containing both N-thiazolylamide and carboxylate. (R)-3-benzyl-4-((4-(2-chlorophenyl)thiazol-2-yl)(methyl)amino)-4-oxobutanoic acid (compound 14) exhibits allosteric agonism with 4-CMTB but not C3. Three other compounds agonize FFA2 in [(35)S]GTPγS-incorporation or cAMP assays but behave as inverse agonists in yeast-based gene-reporter assays, showing orthosteric antagonism of C3 responses but allosteric antagonism of 4-CMTB responses. Thus, the bitopic-like FFA2 ligands engage the orthosteric site but do not compete at the site of 4-CMTB binding on an FFA2 receptor molecule. Compound 14 activates FFA2 on human neutrophils and mouse adipocytes, but appears not to inhibit lipolysis upon treatment of human primary adipocytes in spite of the presence of a functional FFA2 receptor in these cells. Hence, these new ligands may reveal differences in coupling of FFA2 between human and rodent adipose tissues.

14.
J Biol Chem ; 290(38): 23009-22, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26198634

RESUMO

The glucagon and glucagon-like peptide-1 (GLP-1) receptors play important, opposing roles in regulating blood glucose levels. Consequently, these receptors have been identified as targets for novel diabetes treatments. However, drugs acting at the GLP-1 receptor, although having clinical efficacy, have been associated with severe adverse side-effects, and targeting of the glucagon receptor has yet to be successful. Here we use a combination of yeast reporter assays and mammalian systems to provide a more complete understanding of glucagon receptor signaling, considering the effect of multiple ligands, association with the receptor-interacting protein receptor activity-modifying protein-2 (RAMP2), and the role of individual G protein α-subunits. We demonstrate that RAMP2 alters both ligand selectivity and G protein preference of the glucagon receptor. Importantly, we also uncover novel cross-reactivity of therapeutically used GLP-1 receptor ligands at the glucagon receptor that is abolished by RAMP2 interaction. This study reveals the glucagon receptor as a previously unidentified target for GLP-1 receptor agonists and highlights a role for RAMP2 in regulating its pharmacology. Such previously unrecognized functions of RAMPs highlight the need to consider all receptor-interacting proteins in future drug development.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucagon/farmacologia , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Células HEK293 , Humanos , Ligantes , Proteína 2 Modificadora da Atividade de Receptores/genética
15.
Methods Enzymol ; 556: 141-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25857781

RESUMO

Heterologous yeast expression systems have been successfully used for the production of G-protein-coupled receptors (GPCRs) for both structural and functional studies. Yeast combine comparatively low cost and short culture times with straightforward generation of expression clones. They also perform some key posttranslational modifications not possible in bacterial systems. There are two major yeast expression systems, Pichia pastoris and Saccharomyces cerevisiae, both of which have been used for the production of GPCRs. P. pastoris has a proven track record for the production of large amounts of GPCR for structural studies. High-resolution crystal structures of both the adenosine A2A and the histamine H1 receptors have been obtained using protein expressed in this system. S. cerevisiae is relatively easy to engineer and this has resulted in the development of sophisticated tools for the functional characterization of GPCRs. In this chapter, we provide protocols for both large-scale receptor expression in P. pastoris for structural studies and small-scale receptor expression in S. cerevisiae for functional characterization. In both cases, the receptor used is the human adenosine A2A receptor. The results that both we and others have obtained using these protocols show the wide utility of the yeast expression systems for the production of GPCRs.


Assuntos
Clonagem Molecular/métodos , Pichia/genética , Receptores Acoplados a Proteínas G/genética , Saccharomyces cerevisiae/genética , Expressão Gênica , Humanos , Microscopia Confocal/métodos , Pichia/crescimento & desenvolvimento , Plasmídeos/genética , Receptores Acoplados a Proteínas G/análise , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
16.
PLoS One ; 9(3): e89613, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24595172

RESUMO

One successful approach to obtaining high-resolution crystal structures of G-protein coupled receptors is the introduction of thermostabilising mutations within the receptor. This technique allows the generation of receptor constructs stabilised into different conformations suitable for structural studies. Previously, we functionally characterised a number of mutants of the adenosine A2A receptor, thermostabilised either in an agonist or antagonist conformation, using a yeast cell growth assay and demonstrated that there is a correlation between thermostability and loss of constitutive activity. Here we report the functional characterisation of 30 mutants intermediate between the Rag23 (agonist conformation mutant) and the wild-type receptor using the same yeast signalling assay with the aim of gaining greater insight into the role individual amino acids have in receptor function. The data showed that R199 and L208 have important roles in receptor function; substituting either of these residues for alanine abolishes constitutive activity. In addition, the R199A mutation markedly reduces receptor potency while L208A reduces receptor efficacy. A184L and L272A mutations also reduce constitutive activity and potency although to a lesser extent than the R199A and L208A. In contrast, the F79A mutation increases constitutive activity, potency and efficacy of the receptor. These findings shed new light on the role individual residues have on stability of the receptor and also provide some clues as to the regions of the protein responsible for constitutive activity. Furthermore, the available adenosine A2A receptor structures have allowed us to put our findings into a structural context.


Assuntos
Arginina/fisiologia , Leucina/fisiologia , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais/fisiologia , Arginina/genética , Leucina/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/genética , Leveduras/metabolismo
17.
Biochim Biophys Acta ; 1828(11): 2583-91, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23871992

RESUMO

G-protein coupled receptors (GPCRs) are integral membrane cell surface receptors with key roles in mediating the cellular responses to a wide range of biologically relevant molecules including hormones, neurotransmitters and importantly the majority of currently available drugs. The first high-resolution, X-ray crystallographic structure of a GPCR, that of rhodopsin, was obtained in 2000. It took a further seven years for the next structure, that of the ß2 adrenergic receptor. Remarkably, at the time of writing, there have been an astonishing 18 further independent high-resolution GPCR structures published in the last five years (overall total of 68 structures in different conformations or bound to different ligands). Of particular note is the recent structure of the ß2 adrenergic receptor in complex with its cognate heterotrimeric G-protein revealing for the first time molecular details of the interaction between a GPCR and the complete G-protein. Together these structures have provided unprecedented detail into the mechanism of action of these incredibly important proteins. This review describes several key methodological advances that have made such extraordinarily fast progress possible.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Cristalização , Cristalografia por Raios X , Fragmentos de Imunoglobulinas/metabolismo , Modelos Moleculares , Mutagênese , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética
18.
Br J Pharmacol ; 169(5): 988-98, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23489072

RESUMO

BACKGROUND AND PURPOSE: Thermostabilization by mutagenesis is one method which has facilitated the determination of high-resolution structures of the adenosine A2A receptor (A(2A)R). Sets of mutations were identified, which both thermostabilized the receptor and resulted in preferential agonist (Rag23 mutant) or antagonist (Rant5 and Rant21) binding forms as assessed by radioligand binding analysis. While the ligand-binding profiles of these mutants are known, the effects these mutations have on receptor activation and downstream signalling are less well characterized. EXPERIMENTAL APPROACH: Here we have investigated the effects of the thermostabilizing mutations on receptor activation using a yeast cell growth assay. The assay employs an engineered Saccharomyces cerevisiae, MMY24, which couples receptor activation to cell growth. KEY RESULTS: Analysis of the receptor activation profile revealed that the wild-type (WT) A(2A)R had considerable constitutive activity. In contrast, the Rag23, Rant5 and Rant21 thermostabilized mutants all exhibited no constitutive activity. While the preferentially antagonist-binding mutants Rant5 and Rant21 showed a complete lack of agonist-induced activity, the Rag23 mutant showed high levels of agonist-induced receptor activity. Further analysis using a mutant intermediate between Rag23 and WT indicated that the loss of constitutive activity observed in the agonist responsive mutants was not due to reduced G-protein coupling. CONCLUSIONS AND IMPLICATIONS: The loss of constitutive activity may be an important feature of these thermostabilized GPCRs. In addition, the constitutively active and agonist-induced active conformations of the A(2A)R are distinct.


Assuntos
Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Humanos , Mutação , Receptor A2A de Adenosina/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Temperatura
19.
Assay Drug Dev Technol ; 11(2): 93-100, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23046406

RESUMO

Gap junctions (GJs) are intercellular channels which are composed of the connexin family of proteins that allow electrical and chemical communications and synchronization in tissue ensembles. Evidence suggests that pharmaceutical modulators of these channels may have therapeutic potential or carry undesired liability. In this report, we exogenously expressed human connexin 43 (Cx43, GJA1) and demonstrated functionality in a 96-well flow cytometry assay detecting intercellular transfer of the calcein dye. We have designed a 384-well high-throughput method for detecting the transfer of calcium between HeLa cells expressing Cx43. In this assay, donor cells coexpress Cx43 and the α1A adrenergic Gα-coupled receptor, while recipient cells coexpress Cx43 and the cytoplasmic version of the calcium-sensitive luminescent protein aequorin enhanced by codon optimization (cytoAeq). The two cell populations were mixed, dispensed to 384-well plates, and incubated for 3 h to allow the formation of GJs. Activation of α1A by epinephrine in donor cells led to dose-dependent calcium increases in recipient cells, which were detected by measuring the intensity of aequorin luminescence. The response was dependent on the expression of Cx43 and inhibited by the GJ blocker 18α-glycyrrhetinic acid, suggesting Cx43 GJ-mediated activity. In a parallel experiment with capsaicin and the TrpV1 ion channel in place of phenylephrine and α1A, a similar magnitude of difference in the maximal calcium response was detected in both donor and recipient cells, suggesting that calcium is likely the permeant ion through the GJ. This assay may pave the way for high-throughput screening of GJ modulators for drug discovery.


Assuntos
Equorina , Bioensaio/instrumentação , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Conexina 43/análise , Conexina 43/metabolismo , Citometria de Fluxo/instrumentação , Separação Celular/instrumentação , Códon/genética , Desenho de Equipamento , Análise de Falha de Equipamento , Análise de Injeção de Fluxo/instrumentação , Células HeLa , Humanos , Ativação do Canal Iônico/fisiologia , Substâncias Luminescentes
20.
Zoolog Sci ; 29(6): 373-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22639807

RESUMO

Temperature data loggers (TDL) are mostly used to monitor avian incubation behavior in bird studies. In this paper we demonstrate how TDL can also be used to determine different breeding stages and nest success of the vulnerable Emei Shan Liocichla (Liocichla omeiensis). All nests that contained at least one egg were divided into two groups. Group I included six nests monitored traditionally by the observers' visits, while Group II included eight nests monitored by TDL. Group I and Group II were visited every 1-4 days and 7 days, respectively, to check nest contents and status (e.g., active vs. inactive, and the breeding process) until fledging or nest failure. The time of each observation was recorded to verify the interpretation of TDL. The data recorded by TDL were converted into line graphs of temperature against time and assessed visually. The results indicated that TDL can reliably identify different breeding stages and estimate daily nest survival rates (DSR) and total nest success. The nest success of Group II (0.3015) was higher than that of Group I (0.2387), suggesting that deployment of TDL did not negatively influence nest survival rate of Emei Shan Liocichla. In contrast to traditional nest visits, TDL minimized disturbance by observers and provided a more precise estimate of nest survival. We suggest that TDL should be used more widely in studies of the breeding ecology of rare and endangered birds.


Assuntos
Aves/fisiologia , Comportamento de Nidação/fisiologia , Temperatura , Animais , Espécies em Perigo de Extinção , Meio Ambiente , Oviposição , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...