Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(11): 7763-7770, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456418

RESUMO

Blends comprising organic semiconductors and inorganic quantum dots (QDs) are relevant for many optoelectronic applications and devices. However, the individual components in organic-QD blends have a strong tendency to aggregate and phase-separate during film processing, compromising both their structural and electronic properties. Here, we demonstrate a QD surface engineering approach using electronically active, highly soluble semiconductor ligands that are matched to the organic semiconductor host material to achieve well-dispersed inorganic-organic blend films, as characterized by X-ray and neutron scattering, and electron microscopies. This approach preserves the electronic properties of the organic and QD phases and also creates an optimized interface between them. We exemplify this in two emerging applications, singlet-fission-based photon multiplication (SF-PM) and triplet-triplet annihilation-based photon upconversion (TTA-UC). Steady-state and time-resolved optical spectroscopy shows that triplet excitons can be transferred with near unity efficiently across the organic-inorganic interface, while the organic films maintain efficient SF (190% yield) in the organic phase. By changing the relative energy between organic and inorganic components, yellow upconverted emission is observed upon 790 nm NIR excitation. Overall, we provide a highly versatile approach to overcome longstanding challenges in the blending of organic semiconductors with QDs that have relevance for many optical and optoelectronic applications.

2.
Chem Sci ; 14(45): 13090-13094, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38023493

RESUMO

In molecular dimers that undergo intramolecular singlet fission (iSF), efficient iSF is typically accompanied by triplet pair annihilation at rates which prohibit effective triplet harvesting. Collisional triplet pair separation and intramolecular separation by hopping to additional sites in extended oligomers are both strategies that have been reported to be effective for acene based iSF materials in the literature. Herein, a family of highly soluble diphenylhexatriene (DPH) oligomers were synthesized and investigated using transient absorption spectroscopy to determine whether these approaches can be applied to the non-acene singlet fission chromophore, DPH. While iSF proceeds rapidly for all three new materials, neither concentration nor oligomer size result in significantly enhanced triplet pair lifetime relative to the dilute dimer case. These null results indicate the fallibility of the collisional separation and oligomerisation strategies.

3.
Nanoscale Horiz ; 8(8): 1090-1097, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37272286

RESUMO

Organic-inorganic nanocomposite films formed from blends of small-molecule organic semiconductors and colloidal quantum dots are attractive candidates for high efficiency, low-cost solar energy harvesting devices. Understanding and controlling the self-assembly of the resulting organic-inorganic nanocomposite films is crucial in optimising device performance, not only at a lab-scale but for large-scale, high-throughput printing and coating methods. Here, in situ grazing incidence X-ray scattering (GIXS) gives direct insights into how small-molecule organic semiconductors and colloidal quantum dots self-assemble during blade coating. Results show that for two blends separated only by a small difference in the structure of the small molecule forming the organic phase, crystallisation may proceed down two distinct routes. It either occurs spontaneously or is mediated by the formation of quantum dot aggregates. Irrespective of the initial crystallisation route, the small-molecule crystallisation acts to exclude the quantum dot inclusions from the growing crystalline matrix phase. These results provide important fundamental understanding of structure formation in nanocomposite films of organic small molecules and colloidal quantum dots prepared via solution processing routes. It highlights the fundamental difference to structural evolution which can be made by seemingly small changes in system composition. It provides routes for the structural design and optimisation of solution-processed nanocomposites that are compatible with the large-scale deposition manufacturing techniques that are crucial in driving their wider adoption in energy harvesting applications.

4.
J Am Chem Soc ; 145(4): 2499-2510, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36683341

RESUMO

Intramolecular singlet fission (iSF) facilitates single-molecule exciton multiplication, converting an excited singlet state to a pair of triplet states within a single molecule. A critical parameter in determining the feasibility of SF-enhanced photovoltaic designs is the triplet energy; many existing iSF materials have triplet energies too low for efficient transfer to silicon via a photon multiplier scheme. In this work, a series of six novel dimers based upon the high-triplet-energy, SF-active chromophore, 1,6-diphenyl-1,3,5-hexatriene (DPH) [E(T1) ∼ 1.5 eV], were designed, synthesized, and characterized. Transient absorption spectroscopy and fluorescence lifetime studies reveal that five of the dimers display iSF activity, with time constants for singlet fission varying between 7 ± 2 ps and 2.2 ± 0.2 ns and a high triplet yield of 163 ± 63% in the best-performing dimer. A strong dependence of the rate of fission on the coupling geometry is demonstrated. For optimized iSF behavior, close spatial proximity and minimal through-bond communication are found to be crucial for balancing the rate of SF against the reverse recombination process.

5.
J Mater Chem C Mater ; 10(43): 16321-16329, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36562020

RESUMO

Quantum dot-organic semiconductor hybrid materials are gaining increasing attention as spin mixers for applications ranging from solar harvesting to spin memories. Triplet energy transfer between the inorganic quantum dot (QD) and organic semiconductor is a key step to understand in order to develop these applications. Here we report on the triplet energy transfer from PbS QDs to four energetically and structurally similar tetracene ligands. Even with similar ligands we find that the triplet energy transfer dynamics can vary significantly. For TIPS-tetracene derivatives with carboxylic acid, acetic acid and methanethiol anchoring groups on the short pro-cata side we find that triplet transfer occurs through a stepwise process, mediated via a surface state, whereas for monosubstituted TIPS-tetracene derivative 5-(4-benzoic acid)-12-triisopropylsilylethynyl tetracene (BAT) triplet transfer occurs directly, albeit slower, via a Dexter exchange mechanism. Even though triplet transfer is slower with BAT the overall yield is greater, as determined from upconverted emission using rubrene emitters. This work highlights that the surface-mediated transfer mechanism is plagued with parasitic loss pathways and that materials with direct Dexter-like triplet transfer are preferred for high-efficiency applications.

6.
J Am Chem Soc ; 144(51): 23516-23521, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36575926

RESUMO

Singlet fission (SF) is a promising strategy to overcome thermalization losses and enhance the efficiency of single junction photovoltaics (PVs). The development of this field has been strongly material-limited, with a paucity of materials able to undergo SF. Rarer still are examples that can produce excitons of sufficient energy to be coupled to silicon PVs (>1.1 eV). Herein, we examine a series of a short-chain polyene, dithienohexatriene (DTH), with tailored material properties and triplet (T1) energy levels greater than 1.1 eV. We find that these highly soluble materials can be easily spin-cast to create thin films of high crystallinity that exhibit ultrafast singlet fission with near perfect triplet yields of up to 192%. We believe that these materials are the first solution-processable singlet fission materials with quantitative triplet formation and energy levels appropriate for use in conjunction with silicon PVs.

7.
Nat Mater ; 21(5): 533-539, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35256791

RESUMO

Quantum dot (QD) solids are an emerging platform for developing a range of optoelectronic devices. Thus, understanding exciton dynamics is essential towards developing and optimizing QD devices. Here, using transient absorption microscopy, we reveal the initial exciton dynamics in QDs with femtosecond timescales. We observe high exciton diffusivity (~102 cm2 s-1) in lead chalcogenide QDs within the first few hundred femtoseconds after photoexcitation followed by a transition to a slower regime (~10-1-1 cm2 s-1). QD solids with larger interdot distances exhibit higher initial diffusivity and a delayed transition to the slower regime, while higher QD packing density and heterogeneity accelerate this transition. The fast transport regime occurs only in materials with exciton Bohr radii much larger than the QD sizes, suggesting the transport of delocalized excitons in this regime and a transition to slower transport governed by exciton localization. These findings suggest routes to control the optoelectronic properties of QD solids.


Assuntos
Pontos Quânticos , Compostos de Selênio
8.
J Am Chem Soc ; 144(1): 368-376, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34936763

RESUMO

Natural photosystems use protein scaffolds to control intermolecular interactions that enable exciton flow, charge generation, and long-range charge separation. In contrast, there is limited structural control in current organic electronic devices such as OLEDs and solar cells. We report here the DNA-encoded assembly of π-conjugated perylene diimides (PDIs) with deterministic control over the number of electronically coupled molecules. The PDIs are integrated within DNA chains using phosphoramidite coupling chemistry, allowing selection of the DNA sequence to either side, and specification of intermolecular DNA hybridization. In this way, we have developed a "toolbox" for construction of any stacking sequence of these semiconducting molecules. We have discovered that we need to use a full hierarchy of interactions: DNA guides the semiconductors into specified close proximity, hydrophobic-hydrophilic differentiation drives aggregation of the semiconductor moieties, and local geometry and electrostatic interactions define intermolecular positioning. As a result, the PDIs pack to give substantial intermolecular π wave function overlap, leading to an evolution of singlet excited states from localized excitons in the PDI monomer to excimers with wave functions delocalized over all five PDIs in the pentamer. This is accompanied by a change in the dominant triplet forming mechanism from localized spin-orbit charge transfer mediated intersystem crossing for the monomer toward a delocalized excimer process for the pentamer. Our modular DNA-based assembly reveals real opportunities for the rapid development of bespoke semiconductor architectures with molecule-by-molecule precision.


Assuntos
Perileno
9.
Nat Commun ; 12(1): 1527, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750774

RESUMO

We report a fully efficient singlet exciton fission material with high ambient chemical stability. 10,21-Bis(triisopropylsilylethynyl)tetrabenzo[a,c,l,n]pentacene (TTBP) combines an acene core with triphenylene wings that protect the formal pentacene from chemical degradation. The electronic energy levels position singlet exciton fission to be endothermic, similar to tetracene despite the triphenylenes. TTBP exhibits rapid early time singlet fission with quantitative yield of triplet pairs within 100 ps followed by thermally activated separation to free triplet excitons over 65 ns. TTBP exhibits high photoluminescence quantum efficiency, close to 100% when dilute and 20% for solid films, arising from triplet-triplet annihilation. In using such a system for exciton multiplication in a solar cell, maximum thermodynamic performance requires radiative decay of the triplet population, observed here as emission from the singlet formed by recombination of triplet pairs. Combining chemical stabilisation with efficient endothermic fission provides a promising avenue towards singlet fission materials for use in photovoltaics.

11.
J Phys Chem Lett ; 11(17): 7239-7244, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787302

RESUMO

Triplet energy transfer between inorganic quantum dots (QDs) and organic materials plays a fundamental role in many optoelectronic applications based on these nanocomposites. Attaching organic molecules to the QD as transmitter ligands has been shown to facilitate transfer both to and from QDs. Here we show that the often disregarded thiol anchoring group can achieve quantitative triplet energy transfer yields in a PbS QD system with 6,11-bis[(triisopropylsilyl)ethynyl]tetracene-2-methylthiol (TET-SH) ligands. We demonstrate efficient triplet transfer in a singlet fission-based photon multiplication system with 5,12-bis[(triisopropylsilyl)ethynyl]tetracene generating triplets in solution that transfer to the PbS QDs via the thiol ligand TET-SH. Importantly, we demonstrate the increased thermal stability of the PbS/TET-SH system, compared to the traditional carboxylic acid counterpart, allowing for higher photoluminescence quantum yields.

12.
ACS Nano ; 14(4): 4224-4234, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32181633

RESUMO

Hybrid inorganic-organic materials such as quantum dots (QDs) coupled with organic semiconductors have a wide range of optoelectronic applications, taking advantage of the respective materials' strengths. A key area of investigation in such systems is the transfer of triplet exciton states to and from QDs, which has potential applications in the luminescent harvesting of triplet excitons generated by singlet fission, in photocatalysis and photochemical upconversion. While the transfer of energy from QDs to the triplet state of organic semiconductors has been intensely studied in recent years, the mechanism and materials parameters controlling the reverse process, triplet transfer to QDs, have not been well investigated. Here, through a combination of steady-state and time-resolved optical spectroscopy we study the mechanism and energetic dependence of triplet energy transfer from an organic ligand (TIPS-tetracene carboxylic acid) to PbS QDs. Over an energetic range spanning from exothermic (-0.3 eV) to endothermic (+0.1 eV) triplet energy transfer we find that the triplet energy transfer to the QD occurs through a single step process with a clear energy dependence that is consistent with an electron exchange mechanism as described by Marcus-Hush theory. In contrast, the reverse process, energy transfer from the QD to the triplet state of the ligand, does not show any energy dependence in the studied energy range; interestingly, a delayed formation of the triplet state occurs relative to the quantum dots' decay. Based on the energetic dependence of triplet energy transfer we also suggest design criteria for future materials systems where triplet excitons from organic semiconductors are harvested via QDs, for instance in light emitting structures or the harvesting of triplet excitons generated via singlet fission.

14.
J Phys Chem Lett ; 10(16): 4713-4719, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31362504

RESUMO

Nanocrystal quantum dots are generally coated with an organic ligand layer. These layers are a necessary consequence of their chemical synthesis, and in addition they play a key role in controlling the optical and electronic properties of the system. Here we describe a method for quantitative measurement of the ligand layer in 3 nm diameter lead sulfide-oleic acid quantum dots. Complementary small-angle X-ray and neutron scattering (SAXS and SANS) studies give a complete and quantitative picture of the nanoparticle structure. We find greater-than-monolayer coverage of oleic acid and a significant proportion of ligand remaining in solution, and we demonstrate reversible thermal cycling of the oleic acid coverage. We outline the effectiveness of simple purification procedures with applications in preparing dots for efficient ligand exchange. Our method is transferrable to a wide range of colloidal nanocrystals and ligand chemistries, providing the quantitative means to enable the rational design of ligand-exchange procedures.

15.
J Am Chem Soc ; 141(35): 13867-13876, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31381323

RESUMO

Singlet fission, the process of forming two triplet excitons from one singlet exciton, is a characteristic reserved for only a handful of organic molecules due to the atypical energetic requirement for low energy excited triplet states. The predominant strategy for achieving such a trait is by increasing ground state diradical character; however, this greatly reduces ambient stability. Herein, we exploit Baird's rule of excited state aromaticity to manipulate the singlet-triplet energy gap and create novel singlet fission candidates. We achieve this through the inclusion of a [4n] 5-membered heterocycle, whose electronic resonance promotes aromaticity in the triplet state, stabilizing its energy relative to the singlet excited state. Using this theory, we design a family of derivatives of indolonaphthyridine thiophene (INDT) with highly tunable excited state energies. Not only do we access novel singlet fission materials, they also exhibit excellent ambient stability, imparted due to the delocalized nature of the triplet excited state. Spin-coated films retained up to 85% activity after several weeks of exposure to oxygen and light, while analogous films of TIPS-pentacene showed full degradation after 4 days, showcasing the excellent stability of this class of singlet fission scaffold. Extension of our theoretical analysis to almost ten thousand candidates reveals an unprecedented degree of tunability and several thousand potential fission-capable candidates, while clearly demonstrating the relationship between triplet aromaticity and singlet-triplet energy gap, confirming this novel strategy for manipulating the exchange energy in organic materials.

16.
J Am Chem Soc ; 141(32): 12907-12915, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31336046

RESUMO

Singlet fission is an exciton multiplication process in organic molecules in which a photogenerated spin-singlet exciton is rapidly and efficiently converted to two spin-triplet excitons. This process offers a mechanism to break the Shockley-Queisser limit by overcoming the thermalization losses inherent to all single-junction photovoltaics. One of the most promising methods to harness the singlet fission process is via the efficient extraction of the dark triplet excitons into quantum dots (QDs) where they can recombine radiatively, thereby converting high-energy photons to pairs of low-energy photons, which can then be captured in traditional inorganic PVs such as Si. Such a singlet fission photon multiplication (SF-PM) process could increase the efficiency of the best Si cells from 26.7% to 32.5%, breaking the Shockley-Queisser limit. However, there has been no demonstration of such a singlet fission photon multiplication (SF-PM) process in a bulk system to date. Here, we demonstrate a solution-based bulk SF-PM system based on the singlet fission material TIPS-Tc combined with PbS QDs. Using a range of steady-state and time-resolved measurements combined with analytical modeling we study the dynamics and mechanism of the triplet harvesting process. We show that the system absorbs >95% of incident photons within the singlet fission material to form singlet excitons, which then undergo efficient singlet fission in the solution phase (135 ± 5%) before quantitative harvesting of the triplet excitons (95 ± 5%) via a low concentration of QD acceptors, followed by the emission of IR photons. We find that in order to achieve efficient triplet harvesting it is critical to engineer the surface of the QD with a triplet transfer ligand and that bimolecular decay of triplets is potentially a major loss pathway which can be controlled via tuning the concentration of QD acceptors. We demonstrate that the photon multiplication efficiency is maintained up to solar fluence. Our results establish the solution-based SF-PM system as a simple and highly tunable platform to understand the dynamics of a triplet energy transfer process between organic semiconductors and QDs, one that can provide clear design rules for new materials.

17.
ACS Appl Mater Interfaces ; 9(12): 10971-10982, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28263058

RESUMO

A novel main-chain polyfullerene, poly[fullerene-alt-2,5-bis(octyloxy)terephthalaldehyde] (PPC4), is investigated for its hypothesized superior morphological stability as an electron-accepting material in organic photovoltaics relative to the widely used fullerene phenyl-C61-butyric acid methyl ester (PCBM). When mixed with poly(3-hexylthiophene-2,5-diyl) (P3HT), PPC4 affords low-charge-generation yields because of poor intermixing within the blend. The adoption of a multiacceptor system, by introducing PCBM into the P3HT:polyfullerene blend, was found to lead to a 3-fold enhancement in charge generation, affording power conversion efficiencies very close to that of the prototypical P3HT:PCBM binary control. Upon thermal stressing and in contrast to the P3HT:PCBM binary, photovoltaic devices based on the multiacceptor system demonstrated significantly improved stability, outperforming the control because of suppression of the PCBM migration and aggregation processes responsible for rapid device failure. We rationalize the influence of the fullerene miscibility and its implications on the device performance in terms of a thermodynamic model based on Flory-Huggins solution theory. Finally, the potential universal applicability of this approach for thermal stabilization of organic solar cells is demonstrated, utilizing an alternative low-band-gap polymer-donor system.

18.
Chem Commun (Camb) ; 52(36): 6107-10, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27066898

RESUMO

Phenyl-C61-butyric acid methyl ester (PCBM) is polymerized simply using a one-pot reaction to yield soluble, high molecular weight polymers. The sterically controlled azomethine ylide cycloaddition polymerization (SACAP) is demonstrated to be highly adaptable and yields polymers with probable Mn≈ 24 600 g mol(-1) and Mw≈ 73 800 g mol(-1). Products are metal-free and of possible benefit to organic and hybrid photovoltaics and electronics as they form thin films from solution and have raised LUMOs. The promising electronic properties of this new polymer are discussed.

19.
Adv Funct Mater ; 25(3): 409-420, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25866496

RESUMO

In this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3-hexylthiophene-2,5-diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide-angle X-ray scattering) and GISAXS (grazing incidence small-angle X-ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy). These measurements show that there is a strong relationship between precursor structure and heterojunction nanomorphology. A combination of TAS (transient absorption spectroscopy) and photovoltaic device performance measurements is used to show the intricate balance required between charge photogeneration and percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. This study presents a strong case for xanthate complexes as a useful route to designing optimal heterojunction morphologies for use in the emerging field of hybrid organic/inorganic solar cells, due to the fact that the nanomorphology can be tuned via careful design of these precursor materials.

20.
J Phys Chem Lett ; 4(24): 4253-7, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-26296174

RESUMO

Development of design rules for hybrid inorganic-organic solar cells through understanding charge generation and recombination dynamics is an important pathway for the improvement of solar cell conversion efficiencies. In this Letter, we study the dynamics of charge generation in CdS:polymer blends by transient absorption spectroscopy. We show that charge generation following excitation of the inorganic component is highly efficient and can occur up to a few nanoseconds after excitation, allowing for diffusion of charges within the inorganic component to an interface. In contrast, charge generation following excitation of the organic component occurs on subpicosecond time scales but suffers from two loss processes, incomplete exciton dissociation and geminate recombination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...