Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1790(10): 1244-57, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19524017

RESUMO

BACKGROUND: The assembly of Ser/Thr-linked O-glycans of mucins with core 2 structures is initiated by polypeptide GalNAc-transferase (ppGalNAc-T), followed by the action of core 1 beta3-Gal-transferase (C1GalT) and core 2 beta6-GlcNAc-transferase (C2GnT). Beta4-Gal-transferase (beta4GalT) extends core 2 and forms the backbone structure for biologically important epitopes. O-glycan structures are often abnormal in chronic diseases. The goal of this work is to determine if the activity and specificity of these enzymes are directed by the sequences and glycosylation of substrates. METHODS: We studied the specificities of four enzymes that synthesize extended O-glycan core 2 using as acceptor substrates synthetic mucin derived peptides and glycopeptides, substituted with GalNAc or O-glycan core structures 1, 2, 3, 4 and 6. RESULTS: Specific Thr residues were found to be preferred sites for the addition of GalNAc, and Pro in the +3 position was found to especially enhance primary glycosylation. An inverse relationship was found between the size of adjacent glycans and the rate of GalNAc addition. All four enzymes could distinguish between substrates having different amino acid sequences and O-glycosylated sites. A short glycopeptide Galbeta1-3GalNAcalpha-TAGV was identified as an efficient C2GnT substrate. CONCLUSIONS: The activities of four enzymes assembling the extended core 2 structure are affected by the amino acid sequence and presence of carbohydrates on nearby residues in acceptor glycopeptides. In particular, the sequences and O-glycosylation patterns direct the addition of the first and second sugar residues by ppGalNAc-T and C1GalT which act in a site directed fashion. GENERAL SIGNIFICANCE: Knowledge of site directed processing enhances our understanding of the control of O-glycosylation in normal cells and in disease.


Assuntos
Glicopeptídeos/metabolismo , Mucina-2/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Glicopeptídeos/química , Glicosilação , Humanos , Dados de Sequência Molecular , Mucina-2/química , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Polissacarídeos/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Polipeptídeo N-Acetilgalactosaminiltransferase
2.
Nucleic Acids Res ; 34(6): 1669-75, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16554553

RESUMO

RNA interference (RNAi) has emerged recently as an efficient mechanism for specific gene silencing. Short double-stranded small interfering RNAs (siRNAs) are now widely used for cellular or drug target validation; however, their use for silencing clinically relevant genes in a therapeutic setting remains problematic because of their unfavourable metabolic stability and pharmacokinetic properties. To address some of these concerns, we have investigated the properties of siRNA modified with 2'-deoxy-2'-fluoro-beta-d-arabinonucleotide units (araF-N or FANA units). Here we provide evidence that these modified siRNAs are compatible with the intracellular RNAi machinery and can mediate specific degradation of target mRNA. We also show that the incorporation of FANA units into siRNA duplexes increases activity and substantially enhances serum stability of the siRNA. A fully modified sense 2'-deoxy-2'-fluoro-beta-D-arabinonucleic acid (FANA) strand when hybridized to an antisense RNA (i.e. FANA/RNA hybrid) was shown to be 4-fold more potent and had longer half-life in serum (approximately 6 h) compared with an unmodified siRNA (<15 min). While incorporation of FANA units is well tolerated throughout the sense strand of the duplex, modifications can also be included at the 5' or 3' ends of the antisense strand, in striking contrast to other commonly used chemical modifications. Taken together, these results offer preliminary evidence of the therapeutic potential of FANA modified siRNAs.


Assuntos
Arabinonucleotídeos/química , Interferência de RNA , RNA Interferente Pequeno/química , Células HeLa , Humanos , Luciferases/análise , Luciferases/genética , RNA Interferente Pequeno/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...