Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
medRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826448

RESUMO

Bioactive fatty acid-derived oxylipin molecules play key roles in mediating inflammation and oxidative stress, which underlie many chronic diseases. Circulating levels of fatty acids and oxylipins are influenced by both environmental and genetic factors; characterizing the genetic architecture of bioactive lipids could yield new insights into underlying biological pathways. Thus, we performed a genome wide association study (GWAS) of n=81 fatty acids and oxylipins in n=11,584 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) participants with genetic and lipidomic data measured at study baseline (58.6% female, mean age = 46.1 years, standard deviation = 13.8 years). Additionally, given the effects of central obesity on inflammation, we examined interactions with waist circumference using two-degree-of-freedom joint tests. Heritability estimates ranged from 0% to 47.9%, and 48 of the 81oxylipins and fatty acids were significantly heritable. Moreover, 40 (49.4%) of the 81 oxylipins and fatty acids had at least one genome-wide significant (p< 6.94E-11) variant resulting in 19 independent genetic loci involved in fatty acid and oxylipin synthesis, as well as downstream pathways. Four loci (lead variant minor allele frequency [MAF] range: 0.08-0.50), including the desaturase-encoding FADS and the OATP1B1 transporter protein-encoding SLCO1B1, exhibited associations with four or more fatty acids and oxylipins. The majority of the 15 remaining loci (87.5%) (lead variant MAF range = 0.03-0.45, mean = 0.23) were only associated with one oxylipin or fatty acid, demonstrating evidence of distinct genetic effects. Finally, while most loci identified in two-degree-of-freedom tests were previously identified in our main effects analyses, we also identified an additional rare variant (MAF = 0.002) near CARS2, a locus previously implicated in inflammation. Our analyses revealed shared and distinct genetic architecture underlying fatty acids and oxylipins, providing insights into genetic factors and motivating future multi-omics work to characterize these compounds and elucidate their roles in disease pathways.

2.
Am J Med ; 137(7): 640-648, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583752

RESUMO

BACKGROUND: Higher total serum cholesterol is associated with lower mortality in heart failure. Evaluating associations between lipoprotein subfractions and mortality among people with heart failure may provide insights into this observation. METHODS: We prospectively enrolled a community cohort of people with heart failure from 2003 to 2012 and assessed vital status through 2021. Plasma collected at enrollment was used to measure lipoprotein subfractions via nuclear magnetic resonance spectroscopy. A composite score of 6 lipoprotein subfractions was generated using the lipoprotein insulin resistance index (LP-IR) algorithm. Using covariate-adjusted proportional hazards regression models, we evaluated associations between LP-IR score and all-cause mortality. RESULTS: Among 1382 patients with heart failure (median follow-up 13.9 years), a one-standard-deviation (SD) increment in LP-IR score was associated with lower mortality (hazard ratio [HR] 0.93; 95% confidence interval [CI], 0.97-0.99). Among LP-IR parameters, mean high-density lipoprotein (HDL) particle size was significantly associated with lower mortality (HR per 1-SD decrement in mean HDL particle size = 0.83; 95% CI, 0.78-0.89), suggesting that the inverse association between LP-IR score and mortality may be driven by smaller mean HDL particle size. CONCLUSIONS: LP-IR score was inversely associated with mortality among patients with heart failure and may be driven by smaller HDL particle size.


Assuntos
Insuficiência Cardíaca , Resistência à Insulina , Humanos , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/sangue , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Prospectivos , Medição de Risco/métodos , Lipoproteínas/sangue , Lipoproteínas HDL/sangue , Modelos de Riscos Proporcionais
3.
HGG Adv ; 5(1): 100245, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37817410

RESUMO

Mendelian randomization has been widely used to assess the causal effect of a heritable exposure variable on an outcome of interest, using genetic variants as instrumental variables. In practice, data on the exposure variable can be incomplete due to high cost of measurement and technical limits of detection. In this paper, we propose a valid and efficient method to handle both unmeasured and undetectable values of the exposure variable in one-sample Mendelian randomization analysis with individual-level data. We estimate the causal effect of the exposure variable on the outcome using maximum likelihood estimation and develop an expectation maximization algorithm for the computation of the estimator. Simulation studies show that the proposed method performs well in making inference on the causal effect. We apply our method to the Hispanic Community Health Study/Study of Latinos, a community-based prospective cohort study, and estimate the causal effect of several metabolites on phenotypes of interest.


Assuntos
Análise da Randomização Mendeliana , Saúde Pública , Humanos , Análise da Randomização Mendeliana/métodos , Estudos Prospectivos , Causalidade , Hispânico ou Latino/genética
4.
Commun Med (Lond) ; 3(1): 172, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017291

RESUMO

BACKGROUND: The branched chain amino acids (BCAA) leucine, isoleucine, and valine are essential nutrients that have been associated with diabetes, cancers, and cardiovascular diseases. Observational studies suggest that BCAAs exert homogeneous phenotypic effects, but these findings are inconsistent with results from experimental human and animal studies. METHODS: Hypothesizing that inconsistencies between observational and experimental BCAA studies reflect bias from shared lifestyle and genetic factors in observational studies, we used data from the UK Biobank and applied multivariable Mendelian randomization causal inference methods designed to address these biases. RESULTS: In n = 97,469 participants of European ancestry (mean age = 56.7 years; 54.1% female), we estimate distinct and often opposing total causal effects for each BCAA. For example, of the 117 phenotypes with evidence of a statistically significant total causal effect for at least one BCAA, almost half (44%, n = 52) are associated with only one BCAA. These 52 associations include total causal effects of valine on diabetic eye disease [odds ratio = 1.51, 95% confidence interval (CI) = 1.31, 1.76], valine on albuminuria (odds ratio = 1.14, 95% CI = 1.08, 1.20), and isoleucine on angina (odds ratio = 1.17, 95% CI = 1.31, 1.76). CONCLUSIONS: Our results suggest that the observational literature provides a flawed picture of BCAA phenotypic effects that is inconsistent with experimental studies and could mislead efforts developing novel therapeutics. More broadly, these findings motivate the development and application of causal inference approaches that enable 'omics studies conducted in observational settings to account for the biasing effects of shared genetic and lifestyle factors.


The three branched chain amino acids (BCAAs) leucine, isoleucine, and valine are important building blocks of muscle proteins that are obtained from the diet. Many studies in human populations have examined whether BCAAs affect health and disease. These human studies report results that are inconsistent with results from highly controlled animal studies. Because interest in the therapeutic targeting of BCAAs is growing, we wanted to better understand these discrepancies. Briefly, we used data from a large database that captured many diseases (e.g., cardiovascular disease, cancers, and respiratory disease) and new statistical methods. Our results showed that discrepancies between human studies and animal studies may reflect errors in the ways human studies were designed and conducted. As a result, these human studies may provide a flawed picture of BCAA effects that could mislead efforts developing novel therapeutics.

5.
Open Heart ; 10(2)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37648373

RESUMO

INTRODUCTION: The independent and causal cardiovascular disease risk factor lipoprotein(a) (Lp(a)) is elevated in >1.5 billion individuals worldwide, but studies have prioritised European populations. METHODS: Here, we examined how ancestrally diverse studies could clarify Lp(a)'s genetic architecture, inform efforts examining application of Lp(a) polygenic risk scores (PRS), enable causal inference and identify unexpected Lp(a) phenotypic effects using data from African (n=25 208), East Asian (n=2895), European (n=362 558), South Asian (n=8192) and Hispanic/Latino (n=8946) populations. RESULTS: Fourteen genome-wide significant loci with numerous population specific signals of large effect were identified that enabled construction of Lp(a) PRS of moderate (R2=15% in East Asians) to high (R2=50% in Europeans) accuracy. For all populations, PRS showed promise as a 'rule out' for elevated Lp(a) because certainty of assignment to the low-risk threshold was high (88.0%-99.9%) across PRS thresholds (80th-99th percentile). Causal effects of increased Lp(a) with increased glycated haemoglobin were estimated for Europeans (p value =1.4×10-6), although inverse effects in Africans and East Asians suggested the potential for heterogeneous causal effects. Finally, Hispanic/Latinos were the only population in which known associations with coronary atherosclerosis and ischaemic heart disease were identified in external testing of Lp(a) PRS phenotypic effects. CONCLUSIONS: Our results emphasise the merits of prioritising ancestral diversity when addressing Lp(a) evidence gaps.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Humanos , Lipoproteína(a)/genética , Lacunas de Evidências , Fatores de Risco , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética
8.
Environ Health Perspect ; 130(5): 55001, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533073

RESUMO

Advances in technologies to measure a broad set of exposures have led to a range of exposome research efforts. Yet, these efforts have insufficiently integrated methods that incorporate genetic data to strengthen causal inference, despite evidence that many exposome-associated phenotypes are heritable. Objective: We demonstrate how integration of methods and study designs that incorporate genetic data can strengthen causal inference in exposomics research by helping address six challenges: reverse causation and unmeasured confounding, comprehensive examination of phenotypic effects, low efficiency, replication, multilevel data integration, and characterization of tissue-specific effects. Examples are drawn from studies of biomarkers and health behaviors, exposure domains where the causal inference methods we describe are most often applied. Discussion: Technological, computational, and statistical advances in genotyping, imputation, and analysis, combined with broad data sharing and cross-study collaborations, offer multiple opportunities to strengthen causal inference in exposomics research. Full application of these opportunities will require an expanded understanding of genetic variants that predict exposome phenotypes as well as an appreciation that the utility of genetic variants for causal inference will vary by exposure and may depend on large sample sizes. However, several of these challenges can be addressed through international scientific collaborations that prioritize data sharing. Ultimately, we anticipate that efforts to better integrate methods that incorporate genetic data will extend the reach of exposomics research by helping address the challenges of comprehensively measuring the exposome and its health effects across studies, the life course, and in varied contexts and diverse populations. https://doi.org/10.1289/EHP9098.


Assuntos
Exposição Ambiental , Expossoma , Biomarcadores , Exposição Ambiental/análise , Projetos de Pesquisa
10.
Diabetologia ; 65(3): 477-489, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34951656

RESUMO

AIMS/HYPOTHESIS: Type 2 diabetes is a growing global public health challenge. Investigating quantitative traits, including fasting glucose, fasting insulin and HbA1c, that serve as early markers of type 2 diabetes progression may lead to a deeper understanding of the genetic aetiology of type 2 diabetes development. Previous genome-wide association studies (GWAS) have identified over 500 loci associated with type 2 diabetes, glycaemic traits and insulin-related traits. However, most of these findings were based only on populations of European ancestry. To address this research gap, we examined the genetic basis of fasting glucose, fasting insulin and HbA1c in participants of the diverse Population Architecture using Genomics and Epidemiology (PAGE) Study. METHODS: We conducted a GWAS of fasting glucose (n = 52,267), fasting insulin (n = 48,395) and HbA1c (n = 23,357) in participants without diabetes from the diverse PAGE Study (23% self-reported African American, 46% Hispanic/Latino, 40% European, 4% Asian, 3% Native Hawaiian, 0.8% Native American), performing transethnic and population-specific GWAS meta-analyses, followed by fine-mapping to identify and characterise novel loci and independent secondary signals in known loci. RESULTS: Four novel associations were identified (p < 5 × 10-9), including three loci associated with fasting insulin, and a novel, low-frequency African American-specific locus associated with fasting glucose. Additionally, seven secondary signals were identified, including novel independent secondary signals for fasting glucose at the known GCK locus and for fasting insulin at the known PPP1R3B locus in transethnic meta-analysis. CONCLUSIONS/INTERPRETATION: Our findings provide new insights into the genetic architecture of glycaemic traits and highlight the continued importance of conducting genetic studies in diverse populations. DATA AVAILABILITY: Full summary statistics from each of the population-specific and transethnic results are available at NHGRI-EBI GWAS catalog ( https://www.ebi.ac.uk/gwas/downloads/summary-statistics ).


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Glicemia/genética , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla/métodos , Genômica , Humanos , Polimorfismo de Nucleotídeo Único/genética
11.
Pediatr Obes ; 16(7): e12765, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33381925

RESUMO

BACKGROUND: The genetic underpinnings of glycemic traits have been understudied in adolescent and Hispanic/Latino (H/L) populations in comparison to adults and populations of European ancestry. OBJECTIVE: To identify genetic factors underlying glycemic traits in an adolescent H/L population. METHODS: We conducted a genome-wide association study (GWAS) of fasting glucose (FG) and fasting insulin (FI) in H/L adolescents from the Santiago Longitudinal Study. RESULTS: We identified one novel variant positioned in the CSMD1 gene on chromosome 8 (rs77465890, effect allele frequency = 0.10) that was associated with FI (ß = -0.299, SE = 0.054, p = 2.72×10-8 ) and was only slightly attenuated after adjusting for body mass index z-scores (ß = -0.252, SE = 0.047, p = 1.03×10-7 ). We demonstrated directionally consistent, but not statistically significant results in African and Hispanic adults of the Population Architecture Using Genomics and Epidemiology Consortium. We also identified secondary signals for two FG loci after conditioning on known variants, which demonstrate allelic heterogeneity in well-known glucose loci. CONCLUSION: Our results exemplify the importance of including populations with diverse ancestral origin and adolescent participants in GWAS of glycemic traits to uncover novel risk loci and expand our understanding of disease aetiology.


Assuntos
Estudo de Associação Genômica Ampla , Insulina , Adolescente , Glicemia , Chile , Jejum , Frequência do Gene , Humanos , Insulina/sangue , Estudos Longitudinais , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , Proteínas Supressoras de Tumor/genética
12.
Cell Metab ; 25(3): 622-634, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28215845

RESUMO

Insulin-producing pancreatic ß cells in mice can slowly regenerate from glucagon-producing α cells in settings like ß cell loss, but the basis of this conversion is unknown. Moreover, it remains unclear if this intra-islet cell conversion is relevant to diseases like type 1 diabetes (T1D). We show that the α cell regulators Aristaless-related homeobox (Arx) and DNA methyltransferase 1 (Dnmt1) maintain α cell identity in mice. Within 3 months of Dnmt1 and Arx loss, lineage tracing and single-cell RNA sequencing revealed extensive α cell conversion into progeny resembling native ß cells. Physiological studies demonstrated that converted α cells acquire hallmark ß cell electrophysiology and show glucose-stimulated insulin secretion. In T1D patients, subsets of glucagon-expressing cells show loss of DNMT1 and ARX and produce insulin and other ß cell factors, suggesting that DNMT1 and ARX maintain α cell identity in humans. Our work reveals pathways regulated by Arx and Dnmt1 that are sufficient for achieving targeted generation of ß cells from adult pancreatic α cells.


Assuntos
Envelhecimento/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Células Secretoras de Glucagon/metabolismo , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Sinalização do Cálcio/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Criança , Pré-Escolar , DNA (Citosina-5-)-Metiltransferase 1 , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Glucagon/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Glucose/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Análise de Sequência de RNA , Análise de Célula Única , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...