Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 12(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36579510

RESUMO

Since 1990, when our laboratory published the association of the DRD2 Taq A1 allele and severe alcoholism in JAMA, there has been an explosion of genetic candidate association studies, including genome-wide association studies (GWAS). To develop an accurate test to help identify those at risk for at least alcohol use disorder (AUD), a subset of reward deficiency syndrome (RDS), Blum's group developed the genetic addiction risk severity (GARS) test, consisting of ten genes and eleven associated risk alleles. In order to statistically validate the selection of these risk alleles measured by GARS, we applied strict analysis to studies that investigated the association of each polymorphism with AUD or AUD-related conditions, including pain and even bariatric surgery, as a predictor of severe vulnerability to unwanted addictive behaviors, published since 1990 until now. This analysis calculated the Hardy-Weinberg Equilibrium of each polymorphism in cases and controls. Pearson's χ2 test or Fisher's exact test was applied to compare the gender, genotype, and allele distribution if available. The statistical analyses found the OR, 95% CI for OR, and the post risk for 8% estimation of the population's alcoholism prevalence revealed a significant detection. Prior to these results, the United States and European patents on a ten gene panel and eleven risk alleles have been issued. In the face of the new construct of the "preaddiction" model, similar to "prediabetes", the genetic addiction risk analysis might provide one solution missing in the treatment and prevention of the neurological disorder known as RDS.

2.
Open J Immunol ; 12(3): 65-75, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36407790

RESUMO

Pediatric autoimmune neuropsychiatric disorders associated with group A streptococcal infections (PANDAS) is a concept that is used to characterize a subset of children with neuropsychiatric symptoms, tic disorders, or obsessive-compulsive disorder (OCD), whose symptoms are exacerbated by group A streptococcal (GAS) infection. PANDAS has been known to cause a sudden onset of reward deficiency syndrome (RDS). RDS includes multiple disorders that are characterized by dopaminergic signaling dysfunction in the brain reward cascade (BRC), which may result in addiction, depression, avoidant behaviors, anxiety, tic disorders, and/or OCD. According to research by Blum et al., the dopamine receptor D2 (DRD2) gene polymorphisms are important prevalent genetic determinants of RDS. The literature demonstrates that infections like Borrelia and Lyme, as well as other infections like group A beta-hemolytic streptococcal (GABHS), can cause an autoimmune reaction and associated antibodies target dopaminergic loci in the mesolimbic region of the brain, which interferes with brain function and potentially causes RDS-like symptoms/behaviors. The treatment of PANDAS remains controversial, especially since there have been limited efficacy studies to date. We propose an innovative potential treatment for PANDAS based on previous clinical trials using a pro-dopamine regulator known as KB220 variants. Our ongoing research suggests that achieving "dopamine homeostasis" by precision-guided DNA testing and pro-dopamine modulation could result in improved therapeutic outcomes.

3.
Food Nutr Res ; 632019.
Artigo em Inglês | MEDLINE | ID: mdl-31105509

RESUMO

BACKGROUND: The American Society of Hematology reported that according to the National Heart, Lung, and Blood Institute (NHLBI) anemia is the most common blood disorder, which affects more than 3 million Americans, while the Global Burden of Disease 2016 (GBD 2016) reported that iron deficiency anemia (IDA) is the leading cause of anemia, which affects 1.93 billion people worldwide. Anemia is intricately linked to chronic inflammation, chronic kidney disease, gastrointestinal and gynecological malignancies, and autoimmune disorders. Hemorrhagic anemia results in substantial loss of blood, which causes significant alterations in all blood parameters, including reduced iron. The other type of anemia is chronic anemia syndrome (CAS), which is a constellation of disorders and chronic inflammatory events caused by an increasing anaerobic/acidic environment (promoting the growth of anaerobic organisms), inducing a defensive expenditure of alkalinizing buffers in hemoglobin (i.e. histidine), to prevent a dangerous lowering of blood pH. In this process, iron is cleaved from heme groups and transferred out of blood circulation into other organs, like the liver, appearing to be IDA, where excessive accumulation can lead to hemochromatosis, also known as 'iron overload anemia'. DESIGN: A pilot clinical study was conducted in 38 subjects (men = 10; women = 28; age = 22-82 years) to evaluate the rate of absorption and effects on blood of VMP35 multi-nutrient complex (MNC), a non-iron containing liquid nutraceutical supplement. Subjects consumed either placebo or VMP35 (30 mL) over a period of 0, 5, or 30 min. METHODS: Changes in peripheral blood smears from 38 subjects were observed using live blood cell imaging (LBCI) with phase contrast microscopy. Adverse events were rigorously monitored. RESULTS: VMP35 caused positive changes in the blood, including morphological, hematological (including restoration of hemoglobin), and rheological changes following 5 min of administration, which were sustained for at least 30 min. CONCLUSION: Overall, the non-iron containing VMP35 can induce improvements in blood properties and potential benefits for subjects even with compromised digestive systems. No adverse events were reported. Further research studies are in progress to explore the mechanistic insight.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...